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Preface

In the last few decades, global nonlinear dynamics has been evolving in a revo-
lutionary way, with applications to a wide variety of mechanical/structural systems
made possible by the use of sophisticated analytical, geometrical, and computa-
tional techniques employing powerful concepts and tools of dynamical systems,
bifurcation, and chaos theory, properly updated and complemented with a view to
engineering aims and with meaningful experimental verifications.

The achievements occurred in the area entail a substantial change of perspective
when dealing with vibration problems and are ready to meaningfully affect the
analysis, control, and design of systems at different scales in applied mechanics and
structural dynamics.

In this context, attention has to be paid, in particular, to the evolution and update
of the classical concept of stability, as ensuing from consideration of global
dynamical effects. Local and global dynamics, bifurcation and complexity, theo-
retical and practical stability play an extremely important—yet still generally
overlooked—role as regards understanding and suitably controlling nonlinear
phenomena, as well as reliably determining the load carrying capacity and safety of
engineering systems.

Local stability and global stability have to be discussed by also considering the
effects of imperfections or small, but finite, dynamical perturbations, along with
variations of control parameters. All of them may arise in technical applications and
experiments and are to be properly considered in the design stage in order to secure
the system capability to sustain changes without modifying the desired outcome.

Robustness of solutions against variations of initial conditions or control
parameters, and system dynamical integrity, are fundamental concepts in analysis
and design. They have to be addressed in view of global phenomena occurring in
the system, which may indeed entail the existence of merely residual levels of
integrity, definitely unacceptable in technical applications. It is just this item that
makes the concept of practical stability, and the associated global analysis,
necessary.

v
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The overall transition from a local stability perspective to a global safety concept
has also major implications as regards the feasibility and effectiveness of techniques
aimed at controlling nonlinear dynamics. In fact, these may drastically change
according to whether the goal is increasing the overall dynamical integrity of the
system, or merely realizing and/or stabilizing a specific kind of response.

This volume presents a series of essays based on the lectures for the Advanced
School on ‘Global Nonlinear Dynamics for Engineering Design and System
Safety,’ held at the International Centre for Mechanical Sciences (CISM) in Udine,
Italy, June 13–17, 2016, which provide a sound base and a theoretical framework
for many applications.

All of the above-mentioned issues, which also permit to explain partial dis-
crepancies between experimental and theoretical/numerical results based on merely
local analyses, are addressed in the six volume chapters by referring to a number of
systems of interest in applications, ranging from macro- to micro/nano-mechanics.
Archetypal discrete systems and reduced-order models of continuous structures are
considered. Specific phenomenological aspects are discussed, yet paying attention
to the common or distinguishing nonlinear dynamical features which are expected
to play a meaningful role in the analysis and design for engineering applications.

J. M. T. Thompson summarizes the progress of the key idea of dynamical
integrity over the last three decades, overviewing some examples of how using it to
cope with the erosion of basins of attraction. Dealing with the concept in more
detail, G. Rega, S. Lenci, and L. Ruzziconi present various possible implementa-
tions of dynamical integrity as a tool to analyze global dynamics in terms of
attractor robustness and basin erosion in phase space and control parameter space,
by also dwelling on its expected potential for establishing a novel paradigm of safe,
yet aware, engineering design. L. Ruzziconi, S. Lenci, and M. I. Younis discuss the
role of dynamical integrity for interpreting and predicting experimental behavior,
distinguishing between theoretical and practical existence of solutions, and
wanted/unwanted attractors, in the presence of escape phenomena which are
dynamical system representations of different failure mechanisms of physical sys-
tems. Dealing with the class of slender structures liable to interactive unstable
buckling, P. B. Goncalves, D. Orlando, F. M. A. Silva, S. Lenci, and G. Rega
analyze the influence of interactive buckling and coupled instabilities on the load
carrying capacity of an archetypal discrete model, by also considering the effect of
imperfections and the safety increase achievable by controlling global bifurcations;
a reduced-order model of a continuous structure is also considered, dwelling on the
influence of uncertainties and noise on dynamical integrity. V. Settimi and G. Rega
present a general framework for studying local and global dynamics of mechanical
systems in a safety perspective, along with their control with different objectives
and consequences, taking as reference a reduced-order model of noncontact atomic
force microscope, which can represent a large number of nonlinear models with
some ensuing dynamic phenomena. Finally, F.-R. Xiong, Q. Han, L. Hong, and
J.-Q. Sun review the cell mapping methods for global analysis of nonlinear systems
with multiple steady-state responses, as applied to deterministic, stochastic, and
fuzzy dynamical systems, and present several examples of recent applications.

vi Preface
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Dynamical Integrity: Three Decades
of Progress from Macro
to Nanomechanics

J. Michael T. Thompson

Abstract During the explosion of interest in applied nonlinear dynamics and chaos
in the 1980s, a key concept was quickly seen to be the concept of dynamical integrity
which was required to cope with, for example, the erosion of basins of attraction by
fractal incursions. Articles by Thompson and Soliman laid down the fundamental
ideas, butmajor contributions byRega andLenci established this integrity as a central
issue in the design of (for example) structures in their inevitable dynamic environ-
ment. They extended and developed the various integrity measures and pioneered
ways of controlling the basin erosion phenomenon, applying the ideas to a wide
range of mechanical problems. The present paper offers a review of this progress,
highlighting key conceptual ideas and some of the more interesting applications.

Keywords Dynamical integrity · MEMS · Nano-mechanics · Fractal basins

1 Introduction

During the explosion of interest in applied nonlinear dynamics and chaos in the
1980s, a key idea was quickly seen to be the concept of dynamical integrity which
was required to cope with, for example, the erosion of basins of attraction by fractal
incursions. Articles by Thompson and Soliman laid down the fundamental ideas, but
major contributions by Rega and Lenci established this integrity as a central issue
in the design of (for example) structures in their inevitable dynamic environment.
They extended and developed the various integrity measures and pioneered ways of
controlling the basin erosion phenomenon—and applied the ideas to a wide range of
mechanical problems. The present paper offers a review of this progress, highlighting
key conceptual ideas and some of the more interesting applications.

The technical concept of integrity relates to any dynamical system that is operating
in a metastable state, namely, one which is stable against small disturbances but

J. M. T. Thompson (B)
Department of Applied Maths and Theoretical Physics, University of Cambridge, Cambridge, UK
e-mail: J.M.T.Thompson@damtp.cam.ac.uk
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Fig. 1 A ball rolling on a
total potential energy
surface, illustrating a
metastable state with several
potential escape routes over
mountain passes

unstable against large ones. As a concrete example, we might consider a ball rolling
on the energy surface of Fig. 1.

Sitting in the well at a potential energy minimum it is stable, but could easily
be knocked out of it, and roll away out of our region of interest. As a short-hand,
we might say that it has escaped from the well, and jumped dynamically to infinity.
Very often, an escaping jump will imply a serious malfunction or collapse, and we
will for convenience usually speak in these terms. But in some circumstances, such
a jump might be a desired outcome, as when a molecule is required to jump out of a
potential well and away from a constraining protein to destroy a virus; or when the
jump implies the required activation of a switch in an electronic circuit.

Usually, a dynamical system will be subjected to controlled static or dynamic
changes under which it is expected to operate, and these will invariably change
the shape of the potential well, and the height of the constraining energy barriers.
Additionally, any real systemwill experience unwanted disturbances and shocks from
its environment, which are often conveniently described as noise. Predicting escape
or non-escape from such a metastable condition is the topic of this chapter, and it
clearly requires a study of phase space and its conceptual safe basins of attraction.
Under periodic excitation, these basins of attraction can suddenly shrink in size and
become penetrated by fractal fingers, as we shall now describe.

In this chapter, we look at the new phenomena presented to engineers and applied
scientists in the book by Thompson and Stewart (1986) and examine, in particular,
the Thompson-Soliman treatment of fractal basin erosion in driven nonlinear oscil-
lators, as quantified by Dover Cliff integrity curves (Thompson 1989; Soliman and
Thompson 1989). After describing these original discoveries at University College
London, we then follow the development over the next 27 years focusing particu-
larly on the imaginative contributions of Giuseppe Rega and Stefano Lenci. These
authors devised new integrity measures and the successful idea of controlling ero-
sion by adding predicted super-harmonics to the basic sinusoidal forcing. We finally
look at intriguing applications of integrity, including capsize of ships, the buckling
of spherical and cylindrical shells; and developments in micro-electromechanical
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systems (MEMS) and nano-electromechanical systems (NEMS). Note that, in this
paper, we write MEMS to embrace NEMS as well.

Applications in MEMS do indeed seem almost custom-made for the implementa-
tion of integrity ideas, especially since the electronic components can be tuned with
great precision. They already impinge heavily on all our lives, as essential elements
of accelerometers and pressure sensors in cars, radio-frequency switches and micro-
phones in cell phones and inertia sensors in video games. This makes them a hot
evolving area of science and technology driven by insatiable demands for sophis-
ticated sensors and actuators, which should ideally be self-powered, self-calibrated
and self-tested: and their mass production necessitates tight control and precision.

Most MEMS devices, including gyroscopes, micro-mirrors and thermal actua-
tors, have moving parts that are often highly compliant with significant geometric
nonlinearity. Actuation is often by parallel-plate electrostatic forces which are them-
selves inherently nonlinear, as is the new phenomenon of squeeze-film damping.
So to meet all the design challenges, it has become essential to delve deeply into
the dynamics, and in particular to explore the opportunities of operating micro-
electromechanical systems (MEMS) in highly nonlinear regimes.

2 Fractal Erosion and the Dover Cliff

The escape of a particle (or ball) from a potential well is a recurrent problem through-
out science and engineering. Very often, escape might represent some sort of failure
or collapse, but of course, it could be the desired closing of a miniature MEMS
switch. Examining the simplest case of a damped particle in a cubic well, subjected
to sinusoidal forcing the significance of the fractal erosion process was first noted by
Thompson (1989) working on the escape from a cubic potential well as illustrated
in Fig. 2.

The equation, with damping and periodic forcing, is written as

x ′′ + β x ′ + x−x2 � Fsin(ωt) (1)

and the total potential energy V (x) has the form illustrated. With F �0, before we
introduce non-zero forcing, this nonlinear dynamical system has a two-dimensional
phase space spanned by the displacement, x and its time (t) derivative x′, giving the
portrait displayed in the lower left diagram. In this, the basin of attraction of the
asymptotically stable attractor at the bottom of the well is shown in grey, bounded
by the smooth insets (stable manifolds) of the unstable hilltop saddle equilibrium.

Once the system is forced (F ��0), the phase space becomes three-dimensional
spanned by (x, x′, t) and we use stroboscopic sampling at the forcing-period, T , to
obtain a two-dimensional mapping in the (x, x′) Poincaré section. In this section, the
hilltop solution is now a fixed point corresponding to a small unstable cycle of period
T (called an n �1 cycle). The discrete Poincaré mapping allows invariant manifolds
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Fig. 2 Escape from a potential well under periodic forcing

to touch and then intersect, and this first happens at a homoclinic tangency at F �
FM which can be predicted theoretically by a Melnikov analysis.

For F >FM , there is a homoclinic tangle in which the inset and outset manifolds
intersect each other an infinite number of times. This creates chaos and an infinity of
periodic orbits with mapping points located close to the tangled manifolds. The basin
of attraction of the constrained states within the well (of which there may be many,
of different types) is shown in grey in the lower right diagram and is still bounded
by the inset of the hilltop solution (now a small unstable cycle). Note, though, that
the basin is now being effectively penetrated by an infinite number of fractal fingers.

It was soon established that this basin erosion process is common to a wide
class of escape problems, under both direct and parametric loading (Stewart et al.
1991; Lansbury et al. 1992; Thompson et al. 1992). Figure 3 shows side-by-side the
processes for the escape equation and the escape from one well to another in the
double well oscillator. The latter can be written as

x ′′ + k x ′−x + x3 � A sin(ωt). (2)

We continue this story in Fig. 4. Here, we have plotted the area, A, of the safe
basin (within an appropriate phase-space window), against the magnitude of the
forcing, F, which is here scaled to be unity at the final loss of stability of the central
main-sequence attractor. Meanwhile, the area, A, is scaled to be unity at F �0. The
area stays roughly constant while its boundary is smooth and continues with very
little discontinuity past the homoclinic tangency at FM , where the boundary becomes
fractal. Notice that at FM there is still a central n �1 periodic attractor, though its
path does go through a hysteresis loop (as shown in the lower right-hand sketch of
Fig. 4). Note carefully that at the homoclinic tangency there is no dramatic change
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Fig. 3 Erosion processes for two different escape problems (Lansbury et al. 1992). Displayed are
the well-known escape and twin-well equations

Fig. 4 Illustration of how the area of the safe basin within the well suddenly decreases, signify-
ing a loss of integrity. a The first Dover Cliff graph obtained by Thompson (1989). b The same
phenomenon is shown in a later more complete diagram

in the centre of the safe basin. Chaos and an infinity of periodic orbits exist close
to the edge in the thin fractal zones, but this does not influence the main central
sequence of attractors. Starts within the fractal zone lead to chaotic transients, which
oscillate hesitatingly for an arbitrary and unpredictable length of time before either
escaping or settling onto a safe attractor. But this phenomenon is not in itself serious
or dangerous for so long as the fractal zone is confined to a thin layer around the
edge of the basin, as it is just after FM .

Some way beyond the tangency the fractal fingers suddenly become incursive and
spread rapidly into the safe basin, with thick finger-like striations penetrating into the
very heart of the central zone around the origin, giving in the graph what we might
call a Dover Cliff at the somewhat arbitrary FD >FM . There is a sudden loss of the
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safe basin (which manifests itself in other ways besides just the loss of area) and we
can say that the dynamical integrity of the central attractor is lost.

Being now inevitably close to its basin boundary, the central attractor will be very
sensitive to the dynamic disturbances of an operational environment. As we increase
F further, we observe that the n �1 central periodic attractor finally undergoes a
period doubling cascade to a chaotic attractor, which is destroyed at a global crisis
bifurcation atF=1, afterwhich there are no (major) attractors. This final crisis is what
a designer would traditionally have used as the failure criterion, but our argument is
that the FD at the Dover Cliff should be adopted in design work.

3 Thompson-Soliman Integrity Measures

Nonlinear oscillators with one degree of freedom, some form of periodic forcing
(direct and/or parametric), some damping (linear or nonlinear), but with a wide vari-
ety of well shapes are all prone to the described type of basin erosion, which is best
observed in a stroboscopic Poincaré section. For this reason, the simple integrity
measure of the basin area used by Thompson (1989) was immediately re-examined
and generalized by Soliman and Thompson (1989) who introduced the various mea-
sures of engineering integrity illustrated in Fig. 5. This figure also includes one later
measure introduced by Lenci and Rega (2003) that we shall discuss in the following
section.

The 1989 definitions are as follows:

Fig. 5 Definition of various integrity measures illustrated on a basin (of the escape equation) which
is already well eroded by fractal fingers. The grey ‘unexplored’ area has no significance here
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GIM. Following Thompson (1989), the simplest is based on the area of the safe
basinwithin a prescribedwindow.This global integritymeasure (GIM) is particularly
easy to use and is conveniently independent of the (possibly unknown)finite attractors
onto which the constrained motions settle.

LIM. For a given point attractor which has been located in the (x, x′) Poincaré
section, a particularly relevant measure of its integrity is the minimum distance, L,
in any direction, from the attractor to its basin boundary. This gives us our second
local integrity measure (LIM).

IIM.Our thirdmeasure, based on the concept that amechanical oscillatormight be
subjected to an impulse, in which it could be thought to experience an instantaneous
step change in velocity, involves the minimum distance in the direction of +x′ or−x′.
The minimum distance in the Poincaré section from a point attractor to its boundary
in the direction of positive x′ is written as I+, and in the direction of negative x′ as
I−. With either a positive or negative sense, the value of I gives us the impulsive
integrity measure (IIM).

SIM. A fourth, stochastic integrity measure (SIM) can be defined in terms of the
mean escape time when the attractor is subjected to additive white noise excitation
of prescribed intensity.

A useful comparison between three of these measures for the escape equation
was made by Soliman and Thompson (1990) as illustrated in Fig. 6. Notice that the
different starting heights of these curves have no particular significance; it is the
following shape and position of the Dover Cliff that is of interest. The two marked
values of the forcing amplitude show the homoclinic tangency (FM) and the final
crisis of the main-sequence steady-state attractors (FC).

As well as looking at the fractal forms in phase space, it is useful for design
purposes to look at the corresponding forms in control space (Thompson and Soliman
1990). One such diagram can be drawn in the (F, ω) control space for the ambient
starting condition (x �x′ �0), as shown in Fig. 7.

Here, the displayed forms of the bifurcation diagrams for (on the left) direct
excitation and (on the right) parametric excitation are seen to be essentially similar
in form, emphasizing the wide generality of fractal escape phenomena.

Fig. 6 Comparative Dover
cliffs corresponding to the
three different integrity
measures, SIM, LIM and
GIM
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Fig. 7 Comparative fractal control diagrams (at the lower value of damping, β �0.05)

4 Lenci-Rega Integrity Measures

Stefano Lenci and Giuseppe Rega have given a great deal of thought, over many
years, to the integrity measures that can be most useful in assessing the extent of
fractal basin erosion. A useful and comprehensive review of their work can be found
in their contribution to my Festschrift (Lenci et al. 2013), where they consider in
detail experiments on a rotating pendulum and a micro-electromechanical system.
Two further sources are their overview of the subject in Applied Mechanics Reviews
(Rega and Lenci 2015) and their broader perspective of global safety (Lenci and
Rega 2011). Here, we shall look at three of their, particularly interesting ideas.

The first is that the phase of the forcing at which the stroboscopic section is taken
might play a role (Rega and Lenci 2005). To take account of this, they define the
‘true safe basin’ as the smallest phase-independent set of initial conditions sharing
the desired dynamical property (GIM, LIM, etc.). It is not immediately clear how
important this might be.

The second is the introduction of a new measure (Lenci and Rega 2003) that they
call the integrity factor (IF) which was displayed earlier in Fig. 4. This is based
on the radius of the largest circle that lies entirely in the safe basin. Needing no
knowledge of the relevant attractors, this is as computationally easy to use as GIM
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Fig. 8 Safe basins of attraction of the period 2 solution of a driven pendulum. Here a shows the
‘nominal’ basin of attraction, and b the ‘actual’ safe basin

and succeeds in eliminating all the potentially dangerous fractal regimes from the
integrity evaluation. As we can see in the figure, it is a very useful measure of the
compact part of the safe basin.

The third idea is directed towards improving GIM, which (unlike LIM and IF)
tends to count as safe lots of fractal regimes of dubious reliability (Rega and Lenci
2005). They first note that, in practice, safe basins are always obtained in a discrete
way, leading to the counting of a finite number of cells or pixels. Each cell can
be supposed to have an identifying number (specifying the colour in a picture, for
example) defining a distinctive property of interest, which we will here take to be
either escape or non-escape. Then, when adding up the cells of a ‘nominal’ safe basin
they propose to eliminate from the count all cells that are not surrounded by cells
having the same identifying number. They call the result the ‘actual’ safe basin in
which many of the thinnest fractal parts are no longer present. An extreme example
of a ‘nominal’ safe basin and its associated ‘actual’ one is reproduced in Fig. 8,
which clearly shows the elimination of the fractal parts. When used with GIM, as
here, Lenci and Rega call this the ‘actual global integrity measure’ AGIM.

Examples of four integrity measures are considered and compared with each other
by Lenci et al. (2013) for two experiments, a pendulum and a MEMS system.

5 Global Bifurcations of the Erosion Process

Before looking at applications, we devote this section to displaying the underlying
mechanisms that are involved in the sharp basin erosion process, as illustrated in
Fig. 9. We focus, in particular, on the escape equation (displayed at the foot of the
figure) at the fixed damping level of β �0.1, but this scenario is known to be common
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Fig. 9 a Mechanics of erosion: a schematic set of basins under increasing F. b Mechanics of
erosion: various local and global bifurcation curves are displayed in the (F, ω) control space

to a wide variety of periodically driven damped oscillators which involve an escape
from a potential well (Soliman and Thompson 1992).

In Fig. 9b is the control space of the forcing amplitude, F, against the forcing
frequency ω. Curves in this space denote the various local and global bifurcations
that we are obliged to consider if we wish to fully understand the Dover cliff erosion
process. In this figure, there is a vertical line at ω �0.83, and we focus attention on
the slow controlled increase of F along this line. The attractor–basin phase portraits
that we observe under this sweep of F are displayed in the first column of Fig. 9a,
and the bifurcations that trigger changes in these portraits are shown in the second
column.

At low F, before we cross curve B in the bifurcation diagram, we have the phase
portrait (1). Here, in the phase space of the starting conditions, we show the strobo-
scopic Poincaré mapping point of the unique non-resonant attractor, S, lying in its
grey non-escaping basin of attraction whose boundary is formed by the stable mani-
fold (inset) of the unstable hilltop saddle cycle, D. The constant negative divergence
of the phase ‘flow’, a consequence of the constant positive damping coefficient, β,
implies that the basin must have infinite area in the full Poincaré section, with a finite
area in any finite window of interest.

The first bifurcation, on crossing curve B, is a local saddle-node foldwhich creates
simultaneously a resonant unstable saddle E, and an adjacent resonant attracting
node T. This is the beginning of the hysteresis regime of two competing stable n �
1 attractors. The negative divergence implies that T is born with a “residual” basin
of (in)finite area. The basin structure after fold B is illustrated in portrait (2). The
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total non-escaping basin, still bounded by the inset of D, is now divided into two by
the inset of the resonant saddle, E with the basin of S shown in grey and the basin
of T shown in black. Because the inset of E is born heteroclinically tangled with the
unstable manifold (outset) of D, the two bounded coexisting basins accumulate onto
D. But the boundaries are still smooth and as yet there is no fractal structure.

This changes as we cross curve M, where the inset and outset of D exhibit a
global homoclinic tangency which for low damping can be accurately located by a
Melnikov perturbation analysis. Touching once, these two manifolds must touch an
infinite number of times, generating at higherF a homoclinic tangle and a fractal basin
boundary (Thompson and Stewart 1986). This tangle is displayed very schematically
in portrait (3) where large incursive fractal fingers are starting to penetrate into the
black resonant basin. However, they have not yet crossed the white line representing
the outset of E directed towards T, and the rate of erosion of the safe basin, comprising
the union of the basins of S and T, is still relatively low. This white line is crossed
when we hit curve H representing a global heteroclinic tangency at which the inset
of D touches (at an infinity of points) the outset of E. This triggers a major fractal
incursion in which the escaping fractal fingers flash through the outset of E, and
accumulate on the inset of E as shown in portrait (4). This generates the rapid rate
of erosion of the safe area, under increasing F, at our fixed value of ω �0.83.

Referring back to the bifurcation diagram of Fig. 9b, we should notice the thin
contours lines that show the percentage of the safe basin that remains at a given point
in the (F, ω) control space. These show that the steepest Dover cliff can be expected
at about the frequency, ω, where curve H hits curve A at the point marked T. This
‘worst-case’ frequency is close to, but just above the one that we are considering
here (ω �0.83).

Since its creation with the attractor T, at fold B, the resonant saddle E, has been
moving steadily across the portrait towards the non-resonant attractor S, and on
reaching the fold on curve A, we witness their collision and annihilation. This marks
the end of the hysteresis regime involving the two major coexisting harmonic attrac-
tors, S, and T. This fold A is, between T and Q, what has been called a ‘tangled
saddle-node’ (Thompson and Soliman 1991) because under slowly increasing F it
gives rise to an indeterminate dynamic jump to either the attractor T or completely
out of the basin to the ‘attractor at infinity’. Correspondingly, at this fold, the (in)finite
residual basin of S is instantaneously striated by fine fingers. Under further increase
of F, these fine striations thicken out, so that in the final portrait (5) the whole of the
black basin of T is heavily eroded by relatively thick fingers. The erosion process
continues as a sequence of basin implosions (marked by stars in the last portrait)
associated with short-lived subharmonic cascades at the extremities of the major
incursive fingers and related to changes in accessible saddle orbits.

Meanwhile, the resonant harmonic attractor, T, period-doubles to a subharmonic
of order n �2 with twice the period of the forcing function at curve C marking a
local flip bifurcation. This is the start of a full period doubling cascade ending on
curve E where the final chaotic attractor is annihilated in an end collision with the
current accessible orbit. This global boundary crisis, E, marks the end of the main
sequence of attractors after which there is no (major) attractor available to the system
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and (almost) all the transients lead to escape. These bracketed caveats are needed
because there may indeed be small regimes of F containing bounded attractors but
these usually have very small basins of attraction. A subsequent change of Birkhoff
signature on curve G throws additional light on the escape process as demonstrated
by McRobie (1992).

6 Experimental Studies by Lawrence Virgin

Having examined all these fairly intricate theoretical phenomena, based almost exclu-
sively on numerical simulations of simplemodels, it is important to see towhat extent
they relate to the real world of the laboratory. A leading figure in the experimental
side of nonlinear dynamics is Lawrence Virgin with his team at Duke University,
who has published extensively on the subject. Lawrence’s book, Introduction to
Experimental Nonlinear Dynamics (Virgin 2000), is an excellent compendium of
their contributions. This work makes extensive use of stochastic interrogation and
we start by examining this in a little detail.

Stochastic interrogation applies a sequence of randomly chosen disturbances to an
experimental system, thereby inducing transients which explore new areas of phase
space, building up a fuller description of the intrinsic dynamics. In his excellent
book on experimental dynamics, Virgin first describes how small perturbations from
stable and unstable fixed points can be used to estimate their attractive and repulsive
eigenvalues. He then describes how this was extended to large perturbations by
Cusumano and his co-workers (Cusumano and Kimble 1995) to provide sets of
randomly distributed initial conditions strong enough to induce jumps between basins
of attraction.

To study basins in this way, a required large perturbation is achieved by imposing
a short burst of randomly chosen forcing conditions, before switching back to the
basic set of undisturbed forcing parameters. By carefully noting the initial transition
through a stroboscopic Poincaré section, subsequent penetrations are tracked until the
transient finally settles onto a particular steady-state solution. The coordinates of the
initial transition, and all the subsequent penetrations can then be given the identifying
colour for the basin of the particular steady state. This single interrogation can then
be automated to run repeatedly, with constantly varying random perturbations, to
build up a large collection of coloured points displaying the basins of attraction in
the section.

The technique is illustrated in the schematic diagram of Fig. 10, reproduced from
Waite et al. (2014), where we can see in the grey columns the periods of stochastic
input: following which we can watch the transient settling onto a different attractor.

Using this approach Todd and Virgin (1997) made an experimental study of the
bifurcations and basin boundary metamorphoses that give rise to the indeterminate
jumps from a tangled saddle-node bifurcation. This was done with their gravity-
loaded cart-and-track system designed to mimic the twin-well Duffing oscillator, in
which the escape from one well to the other is known to exhibit the same generic
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Fig. 10 Schematic illustration of the stochastic interrogation of a laboratory experiment

Fig. 11 An experimental phase portrait obtained by stochastic interrogation of a cart-and-track ver-
sion of the twin-well Duffing oscillator. Fixed-points (squares) and shaded basins of four competing
attractors can be seen

features as the single-well escape equation. We reproduce in Fig. 11 one of their
attractor–basin portraits from this study, a colour copy of which forms the cover
of the aforementioned book. This shows, in time-embedded coordinates, one of the
phase-space portraits generated by stochastic interrogation.

The method worked so well that the authors were able to replicate experimentally
the subtle global features responsible for the tangled saddle-node that had previously
only been seen in numerical simulations. Note, in particular, that the experimental
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version of our Fig. 9b is presented in Fig. 14.12 of Virgin (2000). In further work
Wiebe et al. (2015)made good progress in determining competing basins of attraction
by stochastic interrogation for the tricky problem posed by a distributed system
represented by a harmonically forced buckled beam.

7 Transient Capsize Diagram

One of the first applications of the integrity ideas was the proposal of a ‘transient
capsize test’ for ships. A vessel excited harmonically by ocean waves coming from
the beam can be described by an equation similar to that of our cubic well, with
escape from the well now representing its capsize. Using the fact that at the Dover
Cliff incursive fractals come sweeping across the centre of what was the safe basin,
it was clear that to pin-point the cliff we do not need to use a massive grid of starts
but can make just a small number of trial simulations (or model tests) in which a ship
in relatively calm water suddenly encounters a train of large fixed-amplitude waves
(Thompson et al. 1990; MacMaster and Thompson 1994; Thompson 1997). If the
fixed height is below the level corresponding to the cliff the ship will remain upright;
if it is above it, the ship will capsize repeatedly. Indeed, a trial simulation from the
ambient state at the origin (x �x′ �0) will often be adequate to locate the cliff with
sufficient precision for practical purposes. This is shown in Fig. 12.

Fig. 12 The transient capsize test producing a plot akin to a fractal control diagram
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Careful studies showed that, despite the unpredictability of chaotic transients,
simulations need only be continued for about 16 wave periods: at a pragmatic engi-
neering level, if a boat does not capsize in 16 forcing cycles it is unlikely to capsize at
all. Requiring, then, perhaps only a single simulation from an ambient start at each (F,
ω) sea-state, we have a feasible approach for either computer studies or model testing
in a wave tank, both of which can otherwise be expensive and time-consuming. This
new approach offers distinct advantages over one based on the outdated and narrow
concept of steady-state rolling motions.

One standard procedure for testing a small-scale model of a vessel in a wave tank
has been to test for capsize in irregular waves of known spectrum, requiring very
long experiments, which even then have frequently not produced any capsizes at all
because sufficiently steepwaves occur so rarely in standard sea spectra. But tomake a
rational assessment of capsizability in either computer simulations or model tests it is
indeed necessary to induce a large number of capsizes. So the new transient capsize
approach is seen to be both easier and more relevant than alternative procedures
(Rainey and Thompson 1991).

8 Snap-Through of a Spherical Dome

A timely study by Soliman and Gonçalves (2003) examined the nonlinear elastic
buckling and dynamics of a shallow spherical dome clamped at its edge and sub-
jected to uniform external pressure, P, as shown in Fig. 13. Considering rotationally
symmetric deflected states of the shell, within a one-degree-of-freedom Galerkin
approximation, the load P was written as a constant part P0 plus a time-varying
sinusoidal part of amplitude A as shown. With A �0 the static loading would yield
snap-through buckling at a critical value of P �PC . For their study, the authors fixed
P at P0 <PC chosen so that the unbuckled shell was in a metastable state with the
potential energy taking the displayed form.

With P0 and the frequency, ω, both fixed, the aim was to study the nonlinear
dynamics under slowly increasing A to investigate the snap-through corresponding
to escape from themetastablewell. This is then our classical escape problem, yielding
the expected safe basin erosiondue to the sudden and rapid incursionof fractal fingers.
This is quantified by the Dover Cliff of the GIM basin-area function shown in the
lower centre picture. Once again, the well-defined cliff edge at AD offers a better
design criterion than the last stable state of the main-sequence attractors at AS . The
authors finally produce an escape boundary in control space of amplitude, A, versus
frequency, ω, shown in the right-hand diagram, with the well-established features.
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Fig. 13 Integrity study of the snap-through of a pressurized spherical dome

9 Parametrically Excited Cylindrical Shell

A recent paper by Gonçalves et al. (2011) studies the nonlinear dynamics of a long
elastic cylindrical shell under uniform axial compression illustrated in Fig. 14. Akin
to the spherical dome, the compression is taken to be the sum of a static pre-load
and a time-dependent sinusoidal component. The pre-load is again less than the
linear buckling load but greater than the static ‘lower buckling load’. So the trivial
unbuckled state of the shell is statically metastable and can be driven into parametric
resonance by the sinusoidal dynamic component. This resonance can drive the shell
to escape from its local potential-energy well, leading to its collapse and failure.
Designing against this escape requires an examination of the basins of attraction
and their fractal erosion, using the concepts of engineering integrity: which is the
problem addressed by the authors.

Starting with Donnell’s shallow shell theory, the authors use a Galerkin approach
to reduce the dynamics to that of a two-degree-of-freedom oscillator, which their
earlier studies had shown to be capable of describing qualitatively the complex non-
linear static and dynamic buckling behaviour of the shell. The normal deflection,W ,
is a function of the circumferential angle, θ , and the axial coordinate, x, and has the
general form

W (θ, x) � A11cos(nθ)sin(mπx/L) + A02cos(2mπ x/L) (3)

where n is the number of waves in the circumferential direction of the basic buckling
or vibration mode, and m is the number of half waves in the axial direction. The
potential energy of this oscillator (derived earlier by Popov et al. 1998) is show in
Fig. 14, next to a purely notional buckling form of the shell.

With two degrees of freedom, the autonomous shell with no excitation has a 4D
phase space, which must be examined in a Poincaré section once the time-dependent
excitation is added. The inclusion of some damping in the formulation gives rise
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Fig. 14 Two-mode interactive post-buckling of a cylindrical shell

to attractors in these phase spaces, and it is the paths and basins of these attractors
that are explored by the authors. Five different broad classes of solution are iden-
tified: (1) the trivial pre-buckling solution, (2) the non-trivial subharmonic of order
two within the pre-buckling well, (3) the small-amplitude vibrations within each of
the post-buckling wells, (4) the medium-amplitude cross-well solutions and (5) a
very large-amplitude cross-well period three solution, which is robust in the whole
excitation amplitude range. Periodic, quasi-periodic and chaotic solutions are all
encountered. The concepts of safe basin and integrity measures are used to quantify
the erosion profile of the various solutions. Two characteristic cases, one associated
with a sub-critical parametric bifurcation and another with a super-critical parametric
bifurcation, are considered in the analysis.

10 Integrity Issues in Atomic Force Microscopy

A new source of applications for the more sophisticated techniques of nonlinear
dynamics and chaos has arisen relatively recently in the design of micro-electro-
mechanical systems (MEMS) as described by a comprehensive overview in the book
by Younis (2011). Here, for example, we find a wide variety of miniature cantilevers
which are required to vibrate with great precision in the presence of highly nonlinear
(Lennard-Jones) inter-atomic potentials. Among the applications described in this
book is the atomic force microscope (AFM) in which a miniature flexible cantilever
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Fig. 15 The atomic force microscope and its view of individual atoms. The right-hand picture
is displayed courtesy of Professor Aimin Song, School of Electrical and Electronic Engineering,
University of Manchester

with a sharp tip at its free end is used to probe the surface of a sample or specimen.
This is illustrated schematically in the left-hand diagram of Fig. 15.

Here a reflected laser beam is used to sense and measure the displacement of the
tip perpendicular to the surface of the specimen. For control purposes, an electronic
feedback is sometimes employed, but this will not be the case in the experiment that
we describe here. On the right of Fig. 15 we show how individual atoms on a crystal
lattice can be revealed by an AFM.

Now, in some forms of AFM, the cantilever tip may be designed to make con-
tact with the surface (constantly or intermittently) but we shall focus here on the
contact-free method. For this, the cantilever is driven into lateral vibration with the
tip very close to, but (hopefully) not making contact with the fixed sample. This
can be achieved by an actuator (piezoelectric, magnetic or electrostatic) driving the
cantilever into resonance. This driving can be laterally (producing direct resonance
of the cantilever) or axially along the cantilever as illustrated in Fig. 16 (producing
parametric resonance).

Measurement of the surface profile depends on the fact that whenever the tip
(stationary or vibrating) gets extremely close to the sample, it will experience inter-
atomic attractive forces. The Lennard-Jones potential energy of this interaction will
be added to the parabolic potential of the cantilever’s strain energy, making the
dynamic response of the cantilever significantly nonlinear: and in this instance equiv-
alent to that of a ball rolling on the grey energy well of Fig. 16. The cantilever’s
response to these forces, sensed via the laser beam, can be analysed to supply the
required topographical information about the surface of the sample.

Drawn underneath the well in Fig. 16 is the phase portrait of an undamped and
undriven cantilever, with the homoclinic saddle connection clearly seen. Inside this
homoclinic orbit, we have the desirable bounded motions, while outside are unde-
sirable ‘escaping’ motions that result in the tip hitting the specimen. Given that the
real cantilever will have damping, the parametric excitation now yields the classic
scenario of the ‘escape from a potential well’. For which we can expect fractal basin
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Fig. 16 Basin erosion and loss of integrity in atomic force microscopy (AFM)

boundaries giving basin erosion and loss of dynamical integrity. In this application,
escape implies the undesirable ‘jump-to-contact instability’ resulting (for example)
in damage to the tip and/or the specimen. A similar phenomenon described byYounis
(2011) is the ‘pull-in’ instability that can damage miniature parallel-plate capacitors.

In the right-hand diagram of Fig. 16 we show the results of Rega and Settimi
(2013) who made a detailed and skillful theoretical study of an AFM of this type.
Their three-dimensionalDoverCliff quantifies the loss of dynamical integrity over the
two-dimensional control space of the driving magnitude and the driving frequency.
The possibility of controlling this loss of integrity is studied by Settimi et al. (2016)
and Settimi and Rega (2016).

11 Control Ideas of Lenci and Rega

The most significant step in the extension and development of the integrity idea was
made by Stefano Lenci and Giuseppe Rega, who sought to improve the integrity of
a nonlinear system by controlling the mechanism of fractal incursion. This incur-
sion was known to be triggered, under increasing harmonic forcing, F, by the first
homoclinic tangling of the invariant manifolds (inset and outset) of the hilltop saddle
cycle that evolves from the hilltop equilibrium solution. This homoclinic bifurca-
tion at FM can be located analytically for a lightly damped system by the Melnikov
method. Their key idea was to add super-harmonic waveforms to the basic (direct
or parametric) harmonic excitation, using the Melnikov theory to predict which of
these super-harmonics had the desired (optimal) effect of increasing FM .
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One of their first applications of this method was to the directly excited cubic
escape equation, often called the Helmholtz oscillator (Lenci and Rega 2003). For
this they investigated the mathematical Melnikov problem, to determine the theo-
retically optimal excitation that maximizes the distance between stable and unstable
manifolds for fixed excitation amplitudes. The optimal excitations in the reduced
case with a finite number of super-harmonic corrections were first determined, and
the optimization problemwith infinite super-harmonics was next solved under a con-
straint on the relevant amplitudes. The mixed case of a finite number of constrained
super-harmonics was also considered. All the theoretical results were confirmed by
numerical simulations, and the practical effectiveness of the control method was
made dramatically visual with the basin erosion and Dover cliff features.

The increase achieved in the basins is displayed here in Fig. 17 where, under
fixed conditions of damping, forcing magnitude and forcing frequency, we see the
increases of safe basin achieved firstly by optimum control with one super-harmonic
and secondly with two super-harmonics.

The comparable shift of the Dover cliff is shown in Fig. 18. This shows the
optimally stabilized cliff with from 1 to 10 super-harmonics, and in particular the
successful shift of the underlying homoclinic tangency.

Useful reviews of this work on the control of basin erosion, with reference to
applications for the Helmholtz, the Duffing and rigid block oscillators is presented
by Rega and Lenci (2005, 2008).

Fig. 17 Safe basin in phase-space enlarged in size by two forms of control
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Fig. 18 Improvement in shifting the Dover cliff to higher forcing magnitude

12 Control of Pull-in for an Actuated Micro-beam

We conclude this survey of integrity and its control with a recent application to
the dynamic pull-in of an electrically actuated micro-beam (Lenci and Rega 2006).
Micro-beams are structural elements employed in the rapidly developing field of
micro- and nano-electromechanical systems. Such a beam may be a component in a
resonant sensor or an actuator and measured in microns, the order of magnitude of
a beam’s dimensions might be: length ~100, breadth ~10 and height ~1. In MEMS
devices electrostatic and electrodynamic attraction might control displacements of
the order of microns, while in NEMS devices, such as scanning probe microscopes,
atomic interactions on sharp tips operate at nano-metric scales.Many unfamiliar phe-
nomena come into play at these very small scales, including two forms of damping,
namely squeeze-film damping dominant in air and coupled thermo-elastic damp-
ing dominant in an ultra-high vacuum. It is the latter that is needed in the present
application, so we must say a few words about it. In a vibrating structure, the strain
field causes a change in the internal energy such that a compressed region becomes
hotter and a stretched region becomes cooler. Irreversible heat flow, driven by the
associated temperature gradients, then results in the dissipation of energy underlying
the thermo-elastic damping. To quantify this damping requires an analysis of the
coupled strain and temperature fields throughout the structure.

The micro-beam in this reported application, in a vacuum with thermo-elastic
damping, is required to oscillate freely between two electrodes, and its potential
energy has the form illustrated in Fig. 19 where x is the downwards deflection of the
centre of the beam.

The unwanted ‘pull-in’ event corresponds to escape from the well, which phys-
ically corresponds to the electrodes hitting one another causing potential damage.
Numerical simulations show that, in the now-expected way, there exists fractal basin
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Fig. 19 Micro-beam oscillation in a high vacuum under excitation from the electrodes

Fig. 20 Original uncontrolled basins of the periodically excited micro-beam

erosion before this pull-in, as illustrated in Fig. 20. Here the safe uncontrolled basins,
being the union of the grey and black basins, are seen to be progressively eroded as
the forcing magnitude increases.
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Fig. 21 Successful control of the safe basin of the micro-beam: a under negative control, b under
zero control, c under positive control and d under optimal control

A significant feature of the paper by Lenci and Rega (2006) is its consideration
of two different integrity measures: the global integrity measure (GIM), using the
area of the safe basin, and the integrity factor (IF), based on the radius of the largest
circle entirely contained in the safe basin as nicely displayed by the white circles in
the figure. The authors claim that while the former is a natural and easy measure, it
does not properly take into account the fractal tongues eroding the safe basin. The IF
is their preferred choice, measuring as it does the ‘compact’ core of the safe basin,
important in many practical applications.

For this study, the authors use a single-well softening model recently proposed by
Gottlieb and Champneys (2005) and it is the homoclinic bifurcation, which triggers
the safe basin erosion eventually leading to pull-in, that is taken as the undesired
event. As in their earlier studies, the authors confirm that appropriate control of added
super-harmonics is successful in shifting the tangency towards higher excitation
amplitudes. The optimization problem is formulated, and excellent performances of
the control method are demonstrated. Figure 21 shows this in terms of safe basins in
the stroboscopic phase portrait.

Finally, Fig. 22 shows the shifting of theDover Cliff for the two integritymeasures
IF and GIM. In each graph is plotted the response for the beam (1) uncontrolled, (2)
under basic control and (3) under optimal control. Great improvements are seen, par-
ticularly in the integrity factor (IF) graph. More recent work, examining the response
of an imperfect micro-beam, should be noted (Ruzziconi et al. 2013).
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Fig. 22 Dover cliff erosion curves for dangerous pull-in of the actuated micro-beam

13 Concluding Remarks

We have seen in this chapter how the concept of dynamical integrity has been devel-
oped into a vital tool for assessing the robustness of driven oscillators to unpredictable
finite disturbances, of either a static or dynamic nature. Over the same period, the
concept has been used in a wide range of practical applications of mechanics and
electro-mechanics. New developments and new applications can be confidently pre-
dicted in the years ahead, especially in the expanding arena of MEMS and NEMS.
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Dynamical Integrity: A Novel Paradigm
for Evaluating Load Carrying Capacity

Giuseppe Rega, Stefano Lenci and Laura Ruzziconi

Abstract The chapter offers an overview of the effects of the research advance-
ments in nonlinear dynamics on the evaluation of system safety. The achievements
developed over the last 30 years entailed a substantial change of perspective. After
recalling the outstanding contributions due to Euler and Koiter, we focus on Thomp-
son’s intuition of global safety. This concept represents a paramount enhancement,
full of theoretical and practical implications. Its relevance as a novel paradigm for
evaluating the load carrying capacity of a system is highlighted. Making reference
to a variety of different case studies, we emphasize that global safety has induced a
deep development in the analysis, control, and design of mechanical and structural
systems. Recent results are presented, and the possibility to implement effective
dedicated control procedures based on global safety concepts is explored. We stress
the importance of global safety for valorizing all the potential of the system and
guaranteeing superior targets. The very general character of the dynamical integrity
approach to design is highlighted.
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1 Introduction

Determining the load carrying capacity is essential in the engineering design to oper-
ate the systemwith the desired outcome. Outstanding contributions were due to Euler
(1744) and Koiter (1945), who laid the foundation for studying this issue. Initially,
the analysis was performed in the framework of the local stability theory. Succes-
sively, the problem was reconsidered by Thompson (1989), who realized that the
local stability may be not enough. This is because disturbances inevitably exist in
real-world applications. They give uncertainties to the operating initial conditions. If
the system is not sufficiently “robust” to tolerate them, they may lead in practice to
an outcome completely different from what theoretically predicted by local achieve-
ments. For this reason, we need to perform additional investigations and complement
the analysis by studying the system also from a global safety perspective (Thompson
and Stewart 2002; Thompson 2018).

This basic idea was clearly formulated in the first pioneering papers. Thompson
(1989) fully identified the global safety issue. He emphasized that from a practical
point of view, the rapid erosion of the basin boundary represents a dramatic loss
of engineering integrity for any system, which may be easily destroyed in a noisy
real-world environment. To deeply investigate this aspect, he introduced engineer-
ing dynamical integrity diagrams, which neatly summarize the progressive loss of
the basin area. Soliman and Thompson (1989) attempted to properly quantify the
dynamical integrity. They realized that the robustness of the system’s response usu-
ally needs to be addressed from a variety of different perspectives. They proposed
four alternative dynamical integrity measures, each one of which is focused on a spe-
cific aspect in order to estimate properly the system’s structural safety according to
the requirements arising in the engineering design. Specifically, they introduced the
Global Integrity Measure (GIM), the Local Integrity Measure (LIM), the Impulsive
Integrity Measure (IIM), and the Stochastic Integrity Measure (SIM). Lansbury et al.
(1992) discussed the need of an appropriate definition of safe basin, i.e., of the set
of initial conditions which may be considered as “safe” for the system.

The relevance of the global analysis for a safe engineering design was clear since
the outset. Investigating the capsizing of a ship (Thompson et al. 1990; Soliman and
Thompson 1991;Rainey andThompson 1991; Thompson 1997), it has been observed
that the safe basin is eroded quite suddenly, which implies that the wave height at
capsizing is significantly smaller than the height where the final steady-state motion
loses stability. This analysis offered a new approach to the quantification of ship
stability in waves. Analyzing driven oscillators (Soliman and Thompson 1992), the
mechanism of basin erosion has been described and its occurrence in a wide class of
nonlinear systems has been highlighted. The rate of erosion is intrinsically dependent
upon the manifolds organization, which to a large extent is determined by the global
events following the homoclinic tangency. Dynamical integrity diagrams have been
performed to examine the loss of engineering integrity due to the rapid erosion
of the non-escaping basin, when varying the driving parameters. Dealing with the
erosion phenomenon (Thompson and Soliman 1990), the incursive escaping fingers
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have been shown to sweep across the center of the safe basin in correspondence of
the fall of dynamical integrity. This yields the characteristic “Dover Cliff” profile.
Abstracting from the particular case study, a deep discussion about the issue of
global safety in amechanical systemhas been developed. In the stochastic framework
(Soliman andThompson 1990), the stochastic penetration of smooth and fractal basin
boundaries under noise excitation has been examined and the effect of external noise
on a steady-state attractor has been investigated using a dynamical integrity measure
suitably defined for the stochastic case.

Starting from these seminal works, global safety concepts and tools have been
further developed. Additional definitions of safe basin have been considered. For
instance, Lenci and Rega (2004a, d) investigated the True Safe Basin, which attempts
to extend the analysis to the special case where phase-independent arguments are
required, e.g., in impacting systems. Focusing on the nontrivial issue of assessing
properly the dynamical integrity, other measures have been suggested. Lenci and
Rega (2003a, b) proposed the Integrity Factor (IF), which is able to catch and com-
bine the main aspects of both the GIM and the LIM. Lenci et al. (2013) introduced
the Actual Global Integrity Measure (AGIM), where a different theoretical approach
is assumed to focus only on the sole compact part of the safe basin. Belardinelli et al.
(2018) refer to the Anisotropic Local Integrity Measure (ALIM) and the Anisotropic
Integrity Factor (AIF), which generalize, respectively, the LIM and the IF to account
for inhomogeneous sensitivities of the state-space variables to perturbations. Fur-
thermore, the protection thickness has been proposed by Sun (1994), the ratio of safe
initial points by Gan and He (2007), the maximum speed of erosion by de Souza Jr.
and Rodrigues (2002), etc. The principal definitions of safe basins and the principal
definitions of dynamical integrity measures are compared by Rega and Lenci (2005,
2008), with also a view to control aspects, highlighting their distinctive features and
main characteristics.

The global safety analysis has been observed to properly interpret and predict
the experimental data (Ruzziconi et al. 2018). In a pendulum parametrically excited
by wave motion, Lenci and Rega (2011a) found that rotations exist experimentally
only where the dynamical integrity is large enough, so that the system can support
experimental imperfections leading to changes in the initial conditions. In a capaci-
tive accelerometer, Ruzziconi et al. (2013d) and Alsaleem et al. (2010) noticed that
the experimental vulnerability to dynamic pull-in develops well before the theoret-
ical inevitable escape. Impressive are the reported results. The experimental pull-in
bands deviate considerably from the classical theoretical simulations based on the
Lyapunov stability theory, whereas they approach closely the dynamical iso-integrity
curves. In a microbeam-based microelectromechanical system (MEMS), Ruzziconi
et al. (2013a, c, f) explored the possibility to apply the global safety analysis for
addressing different issues commonly encountered in the engineering design. This
analysis proved effective to identify the unknown parameters, which is essential to
formulate a reliable mechanical model. Also, it was applied to determine the range
of applicability of the model, after which the theoretical results start decreasing
their accuracy with respect to the experimental data. As highlighted by Lenci et al.
(2013), all the aforementioned experimental studies differ not only for being both in
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the macro- and microscales, but, more importantly, for their dynamical characteris-
tics. They may be considered as complementary examples, which implicitly confirm
the general value of the global safety analysis.

Global safety investigations have been the subject of renewed interest in view
of their applications to many different structures (Gonçalves et al. 2018). In the
Augusti’s model, Orlando et al. (2011) analyzed the influence of nonlinear modal
interactions on the dynamical behavior and examined the basins evolution due to
variation of the system’s parameters. Erosion profiles have been performed, which
illustrate the loss of safety of the structure due to penetration of eroding fractal
tongues into the safe basin. In a MEMS device with bistable static configuration,
Ruzziconi et al. (2012, 2013b) examined the development of considerable versatility
of behavior, which may be desirable in applications. Due to the complexity of the
system’s response, the dynamical integrity analysis is called not only to address the
classical problem of the disappearance of an attractor but also to predict the practical
final behavior. In noncontact Atomic Force Microscopy (AFM), Rega and Settimi
(2013) identified the overall stability boundary in the excitation parameter space
and analyzed the erosion profiles of the bounded attractors. The need to identify
the practical escape thresholds was discussed, in order to ensure an a priori design
safety target. In an excited cylindrical shell (Gonçalves and Del Prado 2002, 2005;
Gonçalves et al. 2007), Gonçalves et al. (2011) focused on the parametric instability
and escape boundaries. They were the first to address the dynamical integrity issue
in dimensions higher than one. They examined the changes of the basins of attraction
in the four-dimensional phase space and developed integrity profiles to measure the
magnitude of the safe basin of the various solutions.

The global safety analysis has been increasingly referred in control issues. A con-
troller has been designed by Lenci and Rega, which aims at controlling the overall
system dynamics. This method was initially formulated for the optimal control of
chaos in discontinuous mechanical systems and successively generalized to contin-
uous nonlinear oscillators. It has been applied, for instance, to control the chaotic
response region in a simple inverted pendulumwith rigid unilateral constraints (Lenci
and Rega 1998a), the nonlinear dynamics in a two-well impact system (Lenci and
Rega1998b, c), the single-well to cross-well chaos transition (Lenci andRega2003c),
the final behavior in asymmetric oscillators (Lenci and Rega 2004c), etc. In this
respect, the global safety analysis plays a key role since is essential to investigate
in detail the effectiveness of the control technique from a global viewpoint and
verify its performances. In the Helmholtz oscillator (Lenci and Rega 2003a), the
controller excitations have been shown to be able to increase the homoclinic bifur-
cation threshold, i.e., to defer the beginning of the erosion, thus preserving for larger
parameter ranges the integrity of the system. In a Duffing oscillator (Lenci and Rega
2003b), the influence of the control on the reduction of the erosion was examined by
comparing the erosion profiles at different excitations, which aims at reducing the
sensitivity to initial conditions. In a thermoelastic electrically actuated microbeam
(Lenci and Rega 2006b), by relying on the results achieved in the dynamical integrity
analysis, the controller was able to avert the pull-in threshold and shift it toward
higher excitation amplitudes. In both the Augusti’s model and in an inverted guyed
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pendulum (Lenci et al. 2012b), the dynamical integritywas decreased by the complex
nonlinear phenomena, while the controller was proven to increase their safety in a
dynamic environment. A unified control framework of the nonregular dynamics was
presented in Rega and Lenci (2003) and in Lenci and Rega (2004b). For comprehen-
sive overview of recent advances in control, we refer to Rega and Lenci (2009) and
Rega et al. (2010).

Local versus global perspective in both dynamics and control has been widely
analyzed by Settimi and Rega (2018). Focusing on a noncontact AFM microbeam,
the issue of adopting an effective control method has been explored in order to keep
the system response in an operationally suitable regime, which is necessary for a
reliable measurement of the sample surface. Initially, an external feedback control
technique was applied (Settimi et al. 2015; Settimi and Rega 2016c). Extensive
simulations were performed, and the stability regions were detected to evaluate both
the effectiveness of the control actuation and the possible criticalities on the overall
response. Developing systematic dynamical integrity simulations (Settimi and Rega
2016b), the considered control technique was demonstrated to work well for the
“local” purpose for which it is specifically designed. Nevertheless, some meaningful
drawbacks arise. A worsening of the system’s practical stability has been noticed
especially in the very sensitive region around the resonance frequencies, where,
instead, the system global behavior has to be more strictly taken under control in
practical applications. For this reason, a different control technique has been assumed
(Settimi and Rega 2016a), which was developed along the same line proposed by
Rega andLenci (2009). This global controlmethodwas based on exploiting the global
dynamical features and aimed at obtaining an enlargement of the system’s safe region
in parameters space. It allowed detecting the value of the optimal superharmonic to
be added for shifting the global bifurcation to a higher value of forcing amplitude,
and succeeded in delaying the drop down of the erosion profile, thus increasing the
overall robustness of the AFM system.

Global safety predictions have been recently accounted in the stochastic frame-
work. In an archetypal model of a structure liable to post-buckling behavior,
Gonçalves and Santee (2008) showed that uncertainties in parameters or small ran-
dom perturbations of the applied load generally lower the system’s load carrying
capacity with respect to the unperturbed ideal case. However, the scatter of results is
well above theMelnikov threshold. In this respect, the iso-integrity curves have been
suggested as reliable, but not conservative, lower bounds of safety. Further devel-
oping these results in different systems, Silva et al. (2013) and Silva and Gonçalves
(2015) observed the influence of inherent uncertainties and random noise on the
attractor-basins organization. Their non-negligible effects in terms of global safety
have been analyzed by resorting to different dynamical integrity measures. When
dealing with structures liable to instability, these effects must be carefully taken into
account to state a proper definition of safety factors.

In addition to the theoretical aspects, also the computational techniques have
been examined. The cell-to-cell mapping method introduced by Hsu (1987) has
been widely referred in the literature, and several variants have been proposed to
improve the computational efficiency. They have been applied in many engineering
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applications (Hong and Sun 2006; Sun 2013). Efforts have been made to extend this
method in case of systems with many degrees-of-freedom (van Campen et al. 1995;
Kreuzer and Lagemann 1996; Eason and Dick 2014). Implementation with parallel
routines for investigating domain’s topology has been suggested (Belardinelli and
Lenci 2016a, b). For a complete and detailed overview of recent advancements in
this field, we refer to Xiong et al. (2018) and references therein.

Overall, nonlinear dynamics is a valuable source. They have “the potential to
significantly enhance performance, effectiveness, reliability and safety of physical
systems as well as offering novel technologies and designs” (Wiercigroch and Rega
2013), and “it is time to develop basic technologies to take advantage of the natural
richness of behavior offered by nonlinear systems” (Wiercigroch and Pavlovskaia
2008). The global safety theory exactly points in this direction. This concept allows
establishing a novel paradigm to evaluate accurately and properly the load carrying
capacity of a system. This is fundamental to enhance its safety and valorize all its
potential in engineering applications.

For all these reasons, in the nonlinear dynamics community, the introduction
of global safety has entailed a substantial change of perspective (Rega and Lenci
2015), which meaningfully affects analysis, control, and design of mechanical and
structural systems. This chapter aims at highlighting, discussing, and reviewing the
main aspects. Dwelling on various case studies coming from different fields, major
achievements are presented and recent results are reported. Both common and more
specific problems are examined. Additional case studies can be found in the forth-
coming chapters of the present book, where further selected models are considered,
which are extracted from a magnitude of different contexts of interest.

The chapter is organized as follows. In Sect. 2, the global safety perspective is
introduced, by presenting the basic idea and shading light on the main aspects. In
Sect. 3, the dynamical integrity tools are examined (safe basin, alternative dynamical
integrity measures, and dynamical integrity diagrams), showing the importance of
the dynamical integrity as a novel criterion for evaluating the load carrying capacity
of a system. Sections 4–6 investigate the use of global safety concepts in the analysis
(Sect. 4), control (Sect. 5), and design (Sect. 6); reference ismade to different systems
and/or models of interest in applied mechanics. In Sect. 7, the main conclusions are
summarized.

2 Achieving the Load Carrying Capacity

In this section, we introduce Thompson’s notion of global safety (1989). After briefly
recalling the historical background, the basic underlying idea is presented. This rep-
resents a valuable advancement for the research community, both from a theoretical
and from a practical viewpoint. We emphasize the fundamental role of the dynamical
integrity to develop a novel paradigm for a reliable estimation of the actual load car-
rying capacity of a system. Bymeans of an archetypal model, the principal aspects of
global safety are illustrated. The Euler, Koiter, and Thompson load carrying capacity
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are evaluated, compared, and discussed. The aim of the reported case study is that
of giving a preliminary overview of the importance of global safety for engineers
and designers, while leaving a deep insight on the specific issues for the forthcoming
sections.

2.1 Three Outstanding Contributions: Euler, Koiter,
and Thompson

Achieving the load carrying capacity of a dynamical system and keeping it when
varying some design parameter is a very sensitive item, full of theoretical relevance
and practical implications, which has been increasingly attracting the attention of
researchers since the past. This topic is intrinsically associated with the concept of
loss of stability. It was a long history of successes and defeats of scientists, which, in
the authors’ opinion, still extends over the present time. In the following, we focus
on the major historical contributions due to Euler, Koiter, and Thompson.

The earliest outstanding study was due to Euler (1707–1783). He was the first to
discover the loss of stability of an equilibrium configuration. In his original work
(Euler 1744), he considered a column subjected to compressive axial load. When
increasing the axial load, he realized that there is a threshold beyond which the
system exhibits buckling behavior. He determined the famous Euler buckling load of
a columnandobtained a pitchfork bifurcation, i.e., a bifurcation of the branching type.
Talking inmodern language, the loss of load carrying capacity was identifiedwith the
system instability occurring at the local bifurcation point of an equilibriumpath,when
varying a driving parameter. Note that Euler was referring to perfect structures, i.e.,
structures without model imperfections. The concept of stability was not developed
at that time; nevertheless, it is felt that the main idea of loss of stability was already
lurking in Euler’s background, although in a substantially static framework.

The concept of stability was formulated in a rigorous way only much later, with
the major contribution, among others, of Lyapunov (1857–1918) (Lyapunov 1892).
We quote Leine (2010) for an interesting historical overview of the development of
the stability concepts. The mathematical definition of Lyapunov (or classical) local
stability roughly states that under infinitesimal changes in the initial conditions,
the system must keep the reference response. Thus, the definition of stability was
formulated in terms of sensitivity of the system’s behavior to changes in the initial
conditions. This formulation is more dynamically oriented.

The introduction of the stability concept was and is a very important advancement
in research, for instance, it plays amajor role in the solution of a variety of engineering
problems ensuing from modern technological development.

Within this context, the second outstanding contribution to the load carrying
capacity issue was due to Koiter (1914–1997). He was the first to discover that
the load carrying capacity of a system is sensitive to static perturbations, which are
always present in nature and technology (Koiter 1945). In fact, under realistic con-
ditions, the system is inevitably subjected to model imperfections (perturbations of
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static nature). They may strongly influence the load carrying capacity of the system
and they may seriously lower its critical load. As an example, due to the imperfec-
tions, the branching point of an equilibrium path becomes a snap point, which, in the
dangerous cases, corresponds to a meaningfully lower load threshold. Thus, static
perturbations have to be taken into account carefully for a safe engineering design.

This idea and its successive developments were so important that investigation in
this direction continues up to date (e.g., Mang et al. 2009). In some sense, Koiter
was a precursor—in the mechanical community—of the unfolding concept of the
bifurcation theory, as well as of the associated structural stability issue.

Indeed, later on, the bifurcation theory provided a mathematical background
(Guckenheimer and Holmes 1983; Wiggins 1990; Troger and Steindl 1991; Kust-
nezov 1995; Nayfeh and Balachandran 1995) to this engineering intuition, with the
development of the structural stability concept, which studies the perturbations of the
systemwith respect to the parameters and not with respect to the initial conditions, as
in classical local stability. Although the idea is simple, the general theorems are very
complex and abstract. Among the major achievements, we recall, for instance, that it
has been rigorously shown that both transcritical and pitchfork bifurcations (respon-
sible for branching) are structurally unstable events, i.e., they are unobservable in
the real world, unless their occurrence is forced by some constraint (e.g., symme-
try). In fact, when adding perturbations in the system (imperfections in mechanical
language), both of them are proven to become saddle-node bifurcations (responsible
for snap).

Structural stability is part of the more general catastrophe theory (Thom 1972;
Zeeman 1977). Yet, when applied to engineering problems in classical mechanics
(such as buckling), structural stability has still a substantially local character.

Although at Koiter’s time it was clear that stability is a dynamical concept (Budi-
ansky and Hutchinson 1964), the major initial contributions were concerned with
a “static” stability approach (Pignataro et al. 1990; van der Heijden 2009). Succes-
sively, “flutter” or “galloping” came to the attention of researchers (see Thompson
(1982) for a theoretical approach and Novak (1969) for a practical approach). In the
bifurcation theory language, the Hopf bifurcation was “discovered” to exist in prac-
tice, according to the fact that it is a structurally stable event. It was actually seen to
occur, e.g., in the dramatic failure of the Tacoma Bridge or in other aero-elastically
induced collapses of structures. Hereafter, dynamics definitely entered the problem
of loss of stability. However, only local bifurcational events were concerned, indeed.

All this background is the framework of the third outstanding contribution on the
load carrying capacity issue, which was due to Thompson (1989). Around the 90s,
he realized that engineering perturbations can have a dynamic nature and not only
a static one, as in Koiter’s vision, and mostly that they can be of finite magnitude.
Indeed, in real-world applications, the system is inevitably subjected not only to
model imperfections but also to possibly meaningful disturbances in the initial con-
ditions. Their effects on the response may be dramatic. To take them into account,
Thompson understood that, in addition to the classical local stability analysis, the
system’s load carrying capacity has to be investigated also from a global safety
perspective. In these regards, he introduced the notion of dynamical integrity.
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Thus, the concept of global safety updates and broadens the classical concept
of stability, by complementing its solely local theoretical character with a global
practical one. For all these reasons, in spite of its conceptual simplicity, Thomp-
son’s intuition represents a paramount enhancement, full of new items and important
consequences.

2.2 Global Safety Perspective: The Basic Idea

According to the classical stability theory, small changes in the initial conditions
do not affect substantially the system’s response. However, how small have to be
perturbations? From a mathematical point of view, the magnitude of perturbations is
not important (e.g., 10–50 is ok). Fromapractical point of view, instead, this point is far
frombeing indifferent. In fact, disturbances in the initial conditions are unavoidable in
real-world applications. They inevitably have a finite magnitude, although small, and
not an infinitesimal one. This may induce serious effects on the final behavior of the
system. Quoting from Gonçalves et al. (2007), “small perturbations not exceeding
the stability threshold usually have a transient character and are followed by the
full recovery of the desired regime,” but “large ones can cause deviations out of
the stability domain and may potentially lead to irreversible system breakdown.”
Considering only infinitesimal changes in the initial conditions, which makes sense
from the mathematical viewpoint, appears weak from a mechanical and/or practical
one.

That is to say, the (Lyapunov) classical stability analysis is indispensable for
studying a system, since it enables to detect the attractors, determine the parameter
ranges where they “theoretically” exist, explore their bifurcational events, illustrate
their unique characteristics in terms of periodic and/or chaotic behavior, etc. All this
investigation is essential, and we cannot prescind from it. Nevertheless, this is not
enough for practical applications, since does not inform whether these theoretical
predictions are actually robust against disturbances in the initial conditions. Because
of them, in the parameter rangewhere the “theoretical stability” according to the clas-
sical local viewpoint is guaranteed, the “practical stability” may be not automatically
ensured.

This aspect is not trivial. To address it, we need to investigate the system also from
the (Thompson) global safety perspective, i.e., the results obtained via the classical
local stability theory have to be further developed and combined with the results
achieved by analyzing the safety from a global viewpoint. The former detects the
range of theoretical existence of the desired behavior; the latter starts from these
results and detects the practical subset of this parameter range where the desired
behavior may effectively sustain relatively large perturbations in the initial condi-
tions without changing the final outcome, namely, where the classical theoretical
predictions may be effectively observed in practice.

Thus, to investigate the classical stability a local analysis is sufficient, whereas
to investigate the global safety a global analysis is required. In fact, assessing the
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robustness of a given solution against disturbances in the initial conditions naturally
involves attractor-basins investigations. From their observation, Thompson had a
double intuition and realized the following two main points:

(i) If the safe basin of a given, desirable, solution is not “large” enough, even if
the solution is stable there will be no hope to observe it in real-world appli-
cations (seeing that, as previously observed, classical local stability refers to
infinitesimal changes in initial conditions, while global safety refers to finite
changes in initial conditions). This was his first fundamental understanding. In
other words, safe basins must have a large enough magnitude.

(ii) A second fundamental requirement for actual global safety is that the safe
basin must be topologically “uncorrupted” or “dynamically integer” (e.g., non-
fractal). More precisely, for a reliable estimation of the load carrying capacity,
we have to trust only on the compact part of the safe basin, ruling out fractality,
squeezing, and other topological effects which reduce safety without apprecia-
bly affecting the magnitude of the safe basin.

Accordingly, global safety highlights that only the behaviors equipped with suf-
ficient dynamical integrity can be actually expected under realistic conditions. The
others are too vulnerable to disturbances and in practice cannot be observed in exper-
iments and applications. This consideration paves the way to the introduction of a
novel criterion for evaluating the load carrying capacity of a system,which is based on
the results coming from dynamical integrity investigation. This enables the designer
to widen the traditional range of applicability of the system and best use all its
potential, while keeping ensuring adequate safety targets.

2.3 An Archetypal Model: Stability Perspective

Referring to an archetypal mechanical system (Fig. 1), the major historical contribu-
tions due to Euler, Koiter, and Thompson are reviewed and illustrated. The principal
aspects involved in the three estimations of the critical load are highlighted. The sim-
plicity of the model permits an analytical investigation, even for several points of the
global analysis requested in the Thompson approach. This allows a deep understand-
ing of the system’s safety. As Koiter lowers the buckling load prediction of Euler,
Thompson lowers the buckling load prediction of Koiter, pcrit

Euler ≥pcrit
Koiter ≥pcrit

Thompson.
The Thompson global safety is observed to be necessary for a reliable estimation of
the load carrying capacity of the system under realistic conditions.

Both the stability and the dynamical perspectives are investigated, respectively,
in the present section (Sect. 2.3) and in the forthcoming one (Sect. 2.4). More details
can be found in Lenci and Rega (2011c, d).

Asymmetrically constrained inverted pendulum. We analyze the single degree-
of-freedom mechanical system depicted in Fig. 1, which represents an inverted pen-
dulumwith an asymmetric elastic constraint, subjected to an axial loadP and a lateral
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Fig. 1 The asymmetrically
constrained inverted
pendulum under coexisting
axial load P and lateral
excitation Q
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excitation Q. The latter is supposed to be a static load simulating a model imper-
fection. The present archetype has been traditionally used in the technical literature
to investigate the post-buckling behavior and imperfection sensitivity of structural
systems liable to unstable bucking (Bazant and Cedolin 1991). In the schematic, H is
the length of the rigid beam, L is the horizontal distance between the hinge B and the
extreme point of the spring A, β is the angle of rotation which describes the system
configuration, I is the moment of inertia of the beam with respect to the hinge B, and
K is the stiffness of the linear spring.

The dimensionless time t � t̂
√

K L H/I , vertical load p �P/KL, and horizontal
load q �Q/KL are assumed, and the dimensionless parameter α �2LH/(L2 +H2) is
introduced, which satisfies 0<α ≤1 and α �1 if and only if L �H. As an example,
in the following, we suppose α �0.8.

The potential is

V (β) � [1 − √
1 + αsin(β)]2

α
− p[1 − cos(β)] − qsin(β) (1)

and the dimensionless equation of motion is

β̈ − psin(β) +

[
1 − 1√

1 + αsin(β)
− q

]
cos(β) � 0 (2)

where the dot means derivative with respect to the dimensionless time.
We investigate the potential. The case without imperfection is examined in Fig. 2,

where the wells are reported for increasing values of the axial load p. The system
has a 2π periodicity with respect to β. Various stable and unstable equilibrium
points exist. Our focus mainly dwells on the rest position, β �0. As far as a small
p is applied, this configuration is a stable equilibrium. Raising p, instead, the right
potential barrier surrounding this point gradually lowers and finallymakes it unstable
in the clockwise direction. Adding a small (non-null and constant) lateral excitation,
i.e., adding a small imperfection, the stable equilibrium no longer coincides with the
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Fig. 2 Potential V (β) in the
perfect case (q �0), at
different values of vertical
load p
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rest position, but is slightly shifted (not shown in the figure); similarly occurs for the
other stable and unstable points.

Recalling the bifurcation theory, the equilibrium points are given by

psin(β) �
[
1 − 1√

1 + αsin(β)
− q

]
cos(β) (3)

The associated bifurcation diagram zoomed in the region of interest for the present
analysis is reported in Fig. 3. The perfect case and the imperfect one are overlapped
with each other, respectively, in black and red lines. In the perfect case, a static
transcritical bifurcation occurs, with the two meeting branches exchanging their
stability.

Adding the imperfection, the transcritical bifurcation is perturbed and replaced
by two saddle-node bifurcations, one involving the branches at p lower than the
unperturbed transcritical bifurcation point and the other one involving the branches
beyond it. This outcome is in conformity with the structural stability theory. The
value of p corresponding to the first saddle-node bifurcation is well below the trans-
critical bifurcation point, i.e., although the imperfection is small, it is able to lower
considerably the threshold corresponding to the first bifurcational event.
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Here, we can clearly note the difference between the Euler and the Koiter critical
loads.

Euler critical load. To detect the Euler critical load pE , we consider the case without
static imperfection (q �0), which exhibits the transcritical bifurcation in Fig. 3. Once
assumed the perfect case, the Euler critical load pE is the load in correspondence of
the bifurcation point. To evaluate it, we can resort, for instance, to the classical
asymptotic development method, which yields

pE � α

2
(4)

As an example, at α �0.8, we obtain pE �0.4.

Koiter critical load. To detect the Koiter critical load pK , we consider the case with
static imperfection (q ��0), which exhibits the perturbed transcritical bifurcation
consisting of two saddle nodes, Fig. 3. Once assumed the imperfect case, the Koiter
critical load pK is the load in correspondence of the first saddle-node bifurcation
point. Similarly to the Euler critical load, also the Koiter one can be evaluated by
resorting to the asymptotic development method, which allows approximating it for
small values of q, i.e., for small values of β. This yields

pk � α

2
− α

√
6

2
√

q (5)

At α �0.8, we have pE – pK
∼� 0.98

√
q .

Note that the difference between the Euler and the Koiter critical loads depends
on the square root of the imperfection. This is well known in the literature (see,
for instance, Thompson and Hunt 1973, p. 21) and is at the base of the sensitive
dependence of the critical load on the imperfections.

As an example, at α �0.8 and q �0.01, we obtain pK �0.302. This estimation is
very accurate, since by numerically solving without approximations we have pK �
0.3014. Thus, in this case, the Koiter critical load is the 75% of the Euler prediction,
i.e., substantially lower despite the smallness of the considered imperfection.

Thompson critical load. In the previous subsections, we have analyzed the effects
of adding a static imperfection parameter q (Koiter). Here, we analyze the effects of
adding a dynamical imperfection, i.e., finite changes in the initial conditions (Thomp-
son). To perform this analysis, we need to operate in the phase space. We initially
focus on the case without q, and then extend the results to the more general situation
where q exists and has to be taken into account. As an example, we refer to p �0.05.

The phase portrait is drawn in Fig. 4. Five different types of solution can be
detected, which, for increasing values of energy, are as follows:

1. in-well periodic orbits, both in the well around β �0 (left well) and in the well
around β �π (right well);
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Fig. 4 Phase portrait in the perfect case (q �0), at p=0.05. Thick lines denote homoclinic and
heteroclinic orbits. The safe region related to the equilibrium β �0 is shaded in gray

2. two orbits homoclinic to the inner hilltop saddle, at βs �1.375, one on the right
of the saddle and surrounding the right potential well, and the other one on the
left and surrounding the left potential well;

3. cross-well periodic oscillations, turning around the two potential wells;
4. two heteroclinic orbits of the outer hilltop saddle at β �4.672, one in the lower

part of the phase space implying anticlockwise rotation, and the other one in the
upper part of the phase space implying clockwise rotation;

5. clockwise and anticlockwise rotations, encompassing all wells.

Since we are focusing on the equilibrium configuration β �0 (perfect case), to
analyze it from a global viewpoint, we consider the left potential well containing it
and the associated homoclinic orbit. This area is shaded in gray in the phase portrait
in Fig. 4. It represents the safe region of the equilibrium position (it will become its
“basin of attraction,” if adding an infinitesimal damping).

To investigate this area for increasing values of the axial load p, we examine the
homoclinic loop delimiting it, Fig. 5. The dots denote the saddle points for each
loop. As p is far from the Euler critical load, the safe region is wide. Conversely,
as p approaches the Euler threshold, the safe region shrinks and “rapidly” becomes
residual. This is dangerous in practice. In fact, the larger is the safe area, the larger
is the ability of the equilibrium position to support finite changes in the initial con-
ditions. As the axial load increases, the safe area decreases, reducing dramatically
the actual safety of the system. For example, at p �0.35, the area is so narrow that
the solution is actually unsafe for practical applications.

Note that as far as the equilibrium point is stable, the safe area may shrink up to
become infinitesimal, but it is not null, in agreement with the fact that the solution
is stable from a mathematical viewpoint. This observation clarifies the difference
between the classical local stability and the Thompson global safety. The classi-
cal stability detects the parameter range where the configuration becomes unstable;
along its stability range, no attention is drawn on the wideness of its safe area, thus
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accounting as safe also the infinitesimal one. The Thompson global safety, instead,
starts from the results achieved in the classical stability analysis and develops them
further. Focusing on the parameter range where the classical stability is ensured, it
investigates the wideness of the safe area and alerts that the safeness of the system
is guaranteed under realistic conditions only in the region where this area is not too
reduced, i.e., where it is able to support finite (and not only infinitesimal) changes in
the initial conditions.

To have an idea of the deterioration of the system’s safety, it is useful to draw
the function A(p), which represents the safe area A inside the homoclinic loop as
the axial load p is varied. This area can be computed analytically (Lenci and Rega
2011c). To enhance generality, we normalize it with respect to the analogous area
at the unloaded case, which is assumed as reference, i.e., we plot A(p)/A(0), where
A(0)�1.720792 for α �0.8. The resulting diagram is shown in Fig. 6, where we
report both the limiting perfect condition where q is absent, which is denoted by a
thicker line, and several examples at different constant values of q.

These profiles provide a dimensionlessmeasure of the percentage reduction—with
respect to the reference unloaded condition—of the magnitude of the safe region
while increasing the axial load. As better observed in the forthcoming Sect. 3, in
the Thompson’s dynamical integrity perspective, this diagram represents a Global
Integrity Measure (GIM) profile. Yet, herein it plays the simpler role of a measure
of the robustness of the stable equilibrium position under finite size perturbations.

In the perfect case, increasing the axial load p, the GIM decreases up to finally
vanishing in correspondence of the Euler critical load pE , where the safe area is
infinitesimal. However, the safe region becomes merely residual—and thus actually
unreliable—well below pE . For example, if we assume that the 10% of the initial area
is still acceptable (and this is of course a very low value in practice), then we have
that the Thompson critical load is pT �0.238, i.e., the 59% of the Euler prediction.
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Adding the imperfection q, the general picture delineated for the perfect system
does not meaningfully change in terms of shape but considerably differs in terms of
critical load. In fact, the resulting curves are nearly parallel to each other and shift
toward lower values of GIM of a quantity which is roughly independent of p, and
is instead proportional to q. As expected, when GIM is null, each curve meets its
corresponding Koiter critical load.

These profiles clearly show that, as the static imperfection parameter q (Koiter)
reduces the extent of the safe range of the stable equilibrium under consideration, the
dynamical imperfection (Thompson) further decreases this safe range. For example,
in the present case, the Euler critical load is pE �0.4; supposing a static imperfection
q �0.02, the Koiter critical load lowers down to p0.02

K �0.261; supposing also a
dynamical imperfection corresponding to GIM �10%, the Thompson critical load
drops to p0.02

T �0.187. Thus, the Koiter critical load is significantly lower than
the Euler prediction, and the Thompson critical load is significantly lower than the
Koiter (and Euler) one. This means that the bifurcation (Euler or Koiter) threshold
overestimates the actual critical load in the presence of (even transient) dynamical
imperfections.

The Euler, Koiter, and Thompson critical loads are reported in Table 1, in order to
appreciate quantitatively the percentage reduction due to the Koiter static imperfec-
tion and, independently, the percentage reduction due to the Thompson dynamical
imperfections, where all of them are evaluated with respect to the Euler critical
threshold (perfect case). We can observe that in the absence of the static imperfec-
tion, the dynamical one considerably decreases the critical load. As the former is
added and increased, instead, the reduction due to the latter becomes progressively
less important. Nevertheless, meaningful additional decrements are still produced,
which further lower the critical load with respect to the one entailed by the sole static
imperfection.
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Table 1 TheKoiter and the Thompson critical loads at different increasing values of q. In parenthe-
ses, there is the percentage with respect to the Euler critical load pE , reported in italic. The column
GIM �10% is illustrated in Fig. 6

q Koiter load Thompson load

GIM �5% GIM �10% GIM �20%

0.00 0.4 (100%) 0.277 (67%) 0.238 (59%) 0.184 (46%)

0.01 0.301 (75%) 0.242 (61%) 0.210 (52%) 0.163 (41%)

0.02 0.261 (65%) 0.215 (54%) 0.187 (47%) 0.145 (36%)

0.03 0.230 (57%) 0.192 (48%) 0.167 (42%) 0.128 (32%)

Before concluding this subsection, it is worth noting that, while the Koiter critical
load can be quantitatively determined upon fixing the value of the static imperfection
q, the Thompson critical load can be determined only upon choosing the admissi-
ble residual safe region, i.e., after fixing the acceptable GIM, as clearly illustrated
in Table 1. This corresponds to fix the maximum allowed dynamical imperfections
(change in initial conditions), which can be safely supported by the system. In this
respect, both Koiter and Thompson theories share the property of being practically
determinablewith the exact knowledge (or an estimation) of the static (q) and dynam-
ical imperfection (which affects GIM), respectively. However, this issue is not easily
achieved in practice, since their magnitude is usually unknown and, moreover, has a
large statistical dispersion.

2.4 An Archetypal Model: Dynamical Perspective

Further referring to the archetypal model in Sect. 2.3, the present study aims at
complementing and completing the companion one, by fully accounting for the
effects of actual dynamic excitations on the load carrying capacity of a mechanical
system. In fact, when dynamic excitations are added, the whole response picture is
quite different, more complex indeed. Accordingly, the global safety issue becomes
more involved, from both a theoretical and a practical point of view. Robustness and
erosion profiles are built, respectively, for varying axial load and dynamic excitation
amplitude, showing that they permit appreciating the practical reduction of the system
load carrying capacity.

The Koiter load carrying capacity. We keep analyzing the archetypal system in
Fig. 1. We assume that the lateral force, i.e., the “imperfection” in our model, is
constituted by a harmonic excitation of amplitude q1 and given frequency ω added
to the static force q (only this last term, instead, was considered in Sect. 2.3). This
is of course a simplification of real excitations, but it is sufficient for our purposes.
Furthermore, to simulate realistic situations, we suppose damping term acting on the
structure.
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The equation of motion becomes

β̈ + cβ̇ − psin(β) +

[
1 − 1√

1 + αsin(β)
− (q + q1sin(ωt))

]
cos(β) � 0 (6)

To avoid the further complexity related to the resonance, in the following, we
consider the dynamics far from its activation, at ω �0.8 (in correspondence of the
resonance, additional phenomena are certainly expected).

We investigate the effects of the dynamic excitation on the system’s load carrying
capacity. Initially, we develop the analysis in the framework of theKoiter perspective.
Accordingly, we focus on the attractors (mainly the periodic ones) and their range of
existence and stability, highlighting how this is affected by the dynamic excitation.
We analyze the bifurcations entailing the disappearance of the attractors, since they
play the role of Koiter critical thresholds.

The path following of periodic solutions is reported in Fig. 7a. For a very small
excitation amplitude (q1 �0.005), the path is similar (and practically can be super-
imposed) to the static one reported in Fig. 3. Increasing q1, the path maintains its
general shape, but a period-doubling (PD) bifurcation appears (point A) determining
a temporary loss of stability of the main path, which then regains stability by an
inverse PD bifurcation (point B) before undergoing the final saddle-node (SN) bifur-
cation (point C). For example, at q1 �0.05, these points occur, respectively, at p �
0.1813, p �0.2278, and p �0.2962. The unstable (red) interval becomes larger when
increasing q1 and eventually it reaches p �0, meaning that due to dynamic excita-
tion the system is unable to carry any axial load. However, this latter case occurs for
very large values of q1 (e.g., at q1 �0.176), which can no longer be considered as
irremovable “imperfections” and thus are out of interest here.

To have a complete description, the loci of the PD bifurcations and of the upper
SN bifurcation are reported in the parameters space (q1, p), Fig. 7b. Note that the PD
bifurcations exist for q1 >0.007.

The zone below the lower (thicker) curve PDlow is the region of stability of the
period-1 solution, which can be considered as the region of “Koiter” dynamic admis-
sibility. This identification could appear rough and too conservative at a first glance,
because above PDlow periodic solutions do exist. In particular, for low values of
q1, above PDlow there are period-2 attractors, while above PDup the main period-1
attractor regains stability. However, the period-2 solution cannot always be consid-
ered as a safe (e.g., acceptable) solution, while the upper period-1 solution is not
always reachable by increasing p. This means that PDlow is really the Koiter critical
threshold in the presence of dynamic excitations.

The interaction between the static (p) and dynamic (q1) causes of loss of load car-
rying capacity can be summarized as follows. For q1 <0.007, the dynamic excitation
has practically no effect and the system fails at about the SN obtained in Sect. 2.3,
since in this range the dynamic excitation lowers this threshold only slightly. At q1

�0.007, there is a sudden fall down of the critical load, which then continues to
decrease smoothly for increasing values of q1. Moreover (not shown in the figures),
if the static (Koiter) imperfection q is also increased, the overall pattern of the thresh-
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forthcoming Figs. 10 and 11. In (a) and (b), c �0.01, α �0.8, q �0.01, and ω �0.8

old curves remains substantially unchanged from the qualitative viewpoint, but the
regions of stable periodic solutions become lower and lower.

Overall, in the presence of dynamic excitations, the response becomesmuchmore
complex than the static one, also for external frequencies out of the resonance interval.
These phenomena strongly reduce the Koiter load carrying capacity of the system,
even in the case of relatively small excitation amplitudes, so that considering only
static imperfections can be very unsafe. Note that, despite the presence of dynamic
excitations, theKoiter load carrying capacity is still determined by local bifurcations.
This is a peculiarity of the “Koiter approach.” On the contrary, the “Thompson
approach” involves a global analysis.

Axial load versus dynamic excitation. We investigate the influence of the pres-
ence of axial load and external dynamic excitation by analyzing the metamorphoses
induced on the organization of the attractor-basins phase portraits. To better appreci-
ate the effects of each contribution, we consider the scenario when each one is varied
while the other is kept fixed and only slightly perturbed.

We start by focusing on the effects of the axial load. To analyze them, we report
attractor-basins phase portraits at increasing values of p, specifically at p �0.00 and
p �0.15, Fig. 8. To deviate only slightly from the unforced case, we assume a small
dynamic excitation, q1 �0.05.

Respectively, the basins of attraction of the period-1 oscillation around β �0
(which is the attractor of interest in the present analysis) and of the period-1 oscil-
lation around β �π are white and red; the basins of the clockwise (β̇ >0) and the
anticlockwise (β̇ <0) rotations are blue and cyan; the basins of the period-3 oscilla-
tions around β �0 and β �π are gray and green.
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Fig. 8 Attractor-basins phase portraits at c �0.01, α �0.8, q �0.01, q1 �0.05, and ω �0.8 for
increasing values of the axial load p, specifically a p �0.00, b p �0.15. The phase space window
is –π <β <π and –1.3< β̇ <1.3 in every picture

We can clearly observe the main features related to p. For a comprehensive under-
standing, it is worth comparing the obtained attractor-basins phase portraits in Fig. 8
with the potential previously investigated in Fig. 2. As seen in the latter, if there is
no axial load, the reference well and the adjacent one have the same depth. Roughly
speaking, they have the same “degree of attractivity.” As p is added, instead, an “un-
balanced potential effect” arises. The reference well becomes flatter in favor of the
adjacent one, which, conversely, becomes deeper and larger, and thus much more
“attractive”. This is more and more pronounced as ramping the axial load up.

This feature is properly reflected in the attractor-basins phase portraits in Fig. 8.
At p �0.0, the reference basin is wide and presents a large compact part inside
the well. Similarly occurs for the adjacent one. At p �0.15, instead, the compact
area leading to the reference attractor progressively shrinks, whereas the other one
expands increasingly. Successively, the reference basin becomes residual and finally
disappears (not shown in the figures).

Thus, the axial load is observed to strongly affect the robustness of the wells.
Next, we focus on the effects of the dynamic excitation. Although both q1 and ω

are parameters of interest, for simplicitywe investigate only the effects of q1 and keep
considering ω �0.8, i.e., far from resonance. The attractor-basins phase portraits at
q1 �0.00 and q1 �0.05 are reported in Fig. 9. To deviate only slightly from the case
without axial load, we assume p �0.05.

At q1 �0.00, each center in the unforced undamped case becomes an attractor.
Both of them present a wide compact area inside its own well. The reference one is
slightly smaller due to the small axial load. Thin tongues are spiraling around the
compact parts.

Raising q1, the attractor-basins phase portraits become increasingly complex,with
the coexistence of a number of attractors. At q1 �0.05, five different basins occur,
as already visible in Fig. 8a for p �0. In addition to the reference solution and
the adjacent one, clockwise and anticlockwise rotations appear and exist for a wide
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Fig. 9 Attractor-basins phase portraits at c �0.01, α �0.8, q �0.01, p �0.05, and ω �0.8, for
increasing values of the dynamic excitation q1, specifically a q1 �0.00, b q1 �0.05. The phase
space window is –π <β <π and –1.3< β̇ <1.3 in every picture

parameter range, both with a wide compact area surrounding the attractor. Also, a
period-3 oscillation emerges, although this is a minor attractor existing in a small
parameter range and equipped with a very narrow basin.

An important aspect related to the existing dynamic excitation is the erosion of the
basins of attraction (and their consequent reduction of dynamical integrity), again
visible already in Fig. 8a. This point deserves special attention. Focusing on the
attractor of interest, we can note that its basin is subjected to a distributed frac-
talization due to the basins of other attractors (in particular of the adjacent one).
This phenomenon is triggered by the global bifurcation of the homoclinic orbit sur-
rounding the reference potential well, which allows the penetration of the eroding
out-of-well fractal tongues into the basin of the in-well attractor; then, secondary
homoclinic and heteroclinic bifurcations further accelerate the process.

The effects of the erosion are clearly apparent. The compact area surrounding
the considered attractor has been somehow reduced by fractality. Nevertheless, at
the present parameter values, this safe compact area is still rather wide, which guar-
antees the attractor not to be extremely vulnerable against dynamical perturbations
constituted by changes in the initial conditions. Further increasing the excitation
amplitude (not reported in the figures), instead, the safe outline disappears and the
reference basin is widely eroded, making its safe compact region practically residual,
i.e., smaller perturbations (with respect to the unexcited case) are sufficient to lead
to another attractor.

Thus, the dynamic excitation is observed to strongly affect the erosion of the
attractor-basins phase portraits (in addition to influencing the appearance of coexist-
ing different attractors).

The Thompson load carrying capacity. Robustness profiles: increasing axial load
at fixed dynamic excitation. We replay the analysis of Sect. 2.3, i.e., we investigate
how the global safety decreases when increasing the axial load, but now considering
the effects of the dynamic excitation.
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Fig. 10 Robustness profile
of GIM, at c �0.01, q �
0.01, α �0.8, q1 �0.05, and
ω �0.8. The GIM curve for
the case without dynamic
excitation (q1 �0) is
reported for comparison
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We still focus on the reference potential well. Accordingly, we consider as safe
basin the union of the basins of all attractors belonging to thewell under investigation;
in the present case, this is mainly constituted by the basin of the reference attractor
(except for a small range where also a minor attractor appears inside the well). To
measure the robustness of the well, we resort to the GIM, where we assume as
normalizing condition the case at p �0 and q1 �0.

The profiles are built by constructing several attractor-basins phase portraits at
increasing values of p, and by measuring the GIM. An example is shown in Fig. 10,
which illustrates the GIM curve at q1 �0.05; the GIM curve for the unexcited case is
reported for comparison. Like the curve in the absence of dynamic excitation (q1 �0),
also the curve in the presence of it (q1 ��0) basically represents a profile of robustness
of the well; a difference is in the role possibly played by the fractal erosion, which
is, however, herein, a substantially localized phenomenon, as somehow expectable
given the actual non-evolutionary, static indeed, character of the considered driving
parameter (axial load).

As anticipated in the attractor-basins phase portraits, the well is and remains
wide as far as a small axial load is applied. The existence of a safe region is well
documented by the GIM curve, which assumes very high values, close to the 100%
(slightly smaller because of the presence of damping). Increasing p, theGIM properly
accounts for the progressive reduction of robustness in favor of the adjacent well. The
profile gradually deteriorates and reaches the PDlow by a practically horizontal slope.
This entails (and indeed is the root of the) sensitivity to dynamical perturbations.After
the interval between the two PD bifurcations, the attractor recovers a small fraction
of its stability and integrity, but subsequently it definitely disappears through SN .

To have a quantitative idea of the decrement of the practical safety, let us sup-
pose that the admissible GIM is the 20%, which is quite a small value, indeed. We
obtain that the “dynamic” Thompson practical stability threshold is equal to pT (q1

�0.05)�0.116, which is the 64% of the practical (i.e., “dynamic”) Koiter thresh-
old pK (q1 �0.05) ∼� 0.18 corresponding to the first period-doubling PDlow, and the
39% of the theoretical (i.e., nearly “static”) Koiter threshold pK (q1 �0.05)�0.296
corresponding to the final SN bifurcation of the path.

Thus, the GIM profile properly provides a quantitative estimation of the practical
robustness of the well. It clearly alerts that this is robust in practice only in the initial
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range, which corresponds to the lower stable part of the local bifurcation path of
the attractor. The final range, instead, is actually unreliable, since too vulnerable
under realistic conditions. More in general, the robustness profile in the presence of
dynamic excitation shows that the practical Thompson critical threshold is lower, and
possibly much lower, than the Koiter one, thus extending to the “dynamic” case the
general conclusion drawn in Sect. 2.3 in terms of robustness of the stable equilibria
solely occurring in the absence of dynamic excitation.

Furthermore, the GIM profiles are able to show some effects associated with
the topological erosion of the reference potential well. In fact, by comparing the
scenarios at q1 �0.0 and q1 �0.05, we can observe that the two curves share a
similar qualitative behavior, but the profile in the presence of dynamic excitation
is systematically below the corresponding one in the absence of it. Still supposing
that the admissible GIM is the 20%, we obtain that the “dynamic” practical stability
(Thompson) threshold, which is equal to pT (q1 �0.05)�0.116, is the 66% of the
“static” one, which is equal to pT (q1 �0)�0.175, namely, the dynamic excitation
almost halves the “static” practical stability (Thompson) threshold.

Thus, the dynamic excitation—though being rather small in the present exam-
ple—entails a strong reduction of the actual robustness, i.e., a strong reduction of
the structural performance of the system. This point will be analyzed more in depth
in the forthcoming subsection.

The Thompson load carrying capacity. Erosion profiles: increasing dynamic
excitation at fixed axial load. We analyze the meaningful effects of the dynamic
excitation in reducing/eroding the safety of the well. Accordingly, we further con-
sider the previous definition of safe basin. The GIM curves at increasing excitation
amplitude are reported in Fig. 11, showing the case at p �0.1 and, for comparison,
in the absence of axial load. Note that these curves substantially represent profiles
of actual erosion of the well.
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Fig. 11 Erosion profiles of GIM (red) and IF (cyan), at c �0.01, q �0.01, α �0.8, ω �0.8, and
a p �0 (without axial load), b p �0.1
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At p �0.0, the curve starts from GIM �100%, due to the normalization, and
ends where the last attractor disappears at the “limiting” (i.e., purely dynamic) Koiter
load carrying capacity q1,K

∼� 0.177. Raising the excitation amplitude, the erosion
is triggered and gradually proceeds. There is a deep fall in correspondence of q1∼� 0.140, after which the integrity is practically residual until disappearance. This
confirms that the practical Thompson critical threshold is lower, and possibly much
lower than the Koiter one. This depends of course on the admissible value of residual
integrity (and on the employed dynamical integrity measure). For example, if we
admit that the 40% of the initial integrity is still acceptable, we have qG I M

1,T �0.14,
corresponding to the 79% of the Koiter threshold. If, instead, one needs a practically
uneroded situation, e.g., 80% of the initial value, then qG I M

1,T �0.115, corresponding
to the 65% of the Koiter threshold.

By comparing the curves at p �0 and p �0.1, we can note that in the latter the
erosion profile starts at a lower value of GIM (at about GIM ∼� 44%). In fact, the
reference well is less robust, since the adjacent one has captured part of its safe
basin (as previously observed in the robustness profiles in Fig. 10, in the potential in
Fig. 2, and in the attractor-basins phase portraits in Figs. 8 and 9). The fractalization
of course proceeds anyway. The well is gradually eroded, as shown by the profile
progressively decreasing up to the final disappearance of the last in-well attractor.
Thus, at p �0.1, the entire curve settles at very low values of GIM, i.e., the well is
always very sensitive to disturbances.

It is worth observing that for a reliable estimation of the load carrying capacity we
have to trust only in the compact part of the safe basin and not in the fractal one. This
is a very important aspect for safe engineering design. For this reason, in addition
to the Global Integrity Measure (GIM), we consider also the Integrity Factor (IF)
proposed by Lenci and Rega (2003b), which is defined as the normalized radius of
the largest hyper-sphere belonging to the safe basin and is thus able to investigate
only its compact core (see Sect. 3.1 forward).

In Fig. 11, the IF curves are overlapped to theGIM ones. For p �0, the central part
of the two curves shows a quite distinct behavior. In particular, IF is lower than GIM,
sometimes much lower, meaning that there is a large fractal part of the basin which
does not contribute to the dynamical integrity. This is an example in which using
GIM would lead to unsafe conclusions, and IF is absolutely needed for a reliable
integrity evaluation. For p �0.1, instead, IF is always higher than GIM. In fact, the
potential well around β �π is much deeper and “attractive” than the reference one;
so attractive, evidently, to capture the area of the safe basin from this last one for
whatever q1 value, thus entailing an overall reduced value of its GIM.

Thus, the erosion profiles highlight that the dynamical integrity of the system close
to the Koiter load carrying capacity is merely residual and, to have a safe behavior, a
lower, and possibly much lower, practical Thompson load carrying capacity must be
considered in applications. Also, in the presence of fractality, it may be necessary to
resort to dynamical integrity measures that are able to investigate only the compact
part of the safe basin.

In Fig. 12, we summarize the dynamical integrity profiles obtained using the
GIM, which provide a measure either of the reduction of robustness (for varying p)
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Fig. 12 A tridimensional view of the robustness–erosion profiles, at c �0.01, q �0.01, α �0.8,
and ω �0.8

or of the extent of basin erosion (for varying q1). This figure offers a comprehensive
overview of the coupling effects entailed on the system’s load carrying capacity by
the coexistence of axial load and lateral dynamic excitation. The overall result is
that both robustness and integrity may become dangerously residual well before the
disappearance of the last in-well attractor by local bifurcations. It is this issue that
makes the concept of practical stability, and the associated global analysis, necessary
in applications for a safe system design.

3 Assessing the Dynamical Integrity

In the present section, the specific tools for assessing the dynamical integrity are
introduced and their relevance to establish a novel paradigm of load carrying capacity
is presented. Namely, we highlight that disturbances are always present in the real
world and are non-necessarily small. To be in safe conditions, a system is called to
sustain them in both the initial conditions (phase space) and in the control parameters
(control space), without changing the desired outcome. To investigate the robustness
of the system in the phase space, it is necessary to define the safe basin and detect
the appropriate measure of dynamical integrity; to investigate the robustness of the
system in the control space, it is necessary to draw dynamical integrity profiles and
charts. Only if the system is robust both in the phase space and in the control space,
its load carrying capacity is ensured. Thus, the dynamical integrity analysis can be
assumed as a novel and valuable criterion for assessing the load carrying capacity of
a system.
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3.1 Robustness in the Phase Space

Safe basin. The starting point of the dynamical integrity analysis is the definition
of the safe basin. The safe basin denotes the set of initial conditions which lead to
a safe outcome for the system, as opposed to all the other conditions which lead to
a non-safe one. Thus, defining the safe basin is a very critical point, since entails
choosing what is considered as dynamically acceptable. This is inherently linked to
the engineering problem to be addressed and may significantly vary from case to
case. That is why there is not a single definition of safe basin, but several ones have
been formulated in the literature according to which safe condition is wished to be
analyzed.

To remain as general as possible, we can state that the safe basin is the set of
initial conditions sharing a common dynamical property, where the shared “common
dynamical property” is specified based on the case study under investigation. Being
very general, this definition covers a variety of different scenarios, which may be,
for instance, the non-escape from a potential well in a (locally or globally) softening
system, the convergence in time toward one (or more) attractor(s), the non-sensitivity
to the initial conditions, etc. Here, we report the main properties referred to in the
(often implicit) definitions of safe basin commonly encountered in the literature.

Potential Well. There are engineering applications where it is important con-
sidering the in-well attractors all together (and not each one individually), namely,
where we need to analyze the robustness of a given potential well. In this case, we
can define the safe basin as the set of all initial conditions approaching the bounded
attractors belonging to a given potential well as t→∞, or in other words, the union
of the basins of attraction of all bounded attractors belonging to a given potential
well. Thus, the safe condition is represented by the basins of attraction of all the
attractors leading at steady state to the desired well, whereas the unsafe condition is
represented by all the other outcomes (whether they be, e.g., dynamics inside another
well, dynamics spanning different wells, escape to the “unbounded” attractor, etc.).
This is probably the most intuitive definition of safe basin.

Bounded Behavior. When dealing with softening systems, we frequently need
to analyze the robustness of all the bounded attractors (regardless which is the well
they belong to) and avoid the region leading to the escape solution. In this case, we
can define the safe basin as the union of the basins of attraction of all the bounded
attractors, i.e., the safe condition is represented by all the initial conditions leading
to a bounded motion, and the unsafe one by the escape.

Individual Attractor. Another common item in engineering is that of analyz-
ing each one of the individual attractors arising inside the potential wells, e.g., for
detecting the range of parameters where they can be actually observed in experiments
and applications. To find a safe basin appropriate for this kind of problems, we need
to resort to a definition where the attention is focused on the basin of attraction of
each single attractor. In particular, the safe basin is the set of initial conditions leading
to a given attractor as t→∞, i.e., the basin of attraction of a given attractor. The
safe condition is represented by all the initial conditions that at steady dynamics lead
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to the attractor under consideration (thus, the safe basin coincides with the basin of
the analyzed attractor) and the unsafe one by all the other dynamics (both bounded
and unbounded).

In the aforementioned cases, the safe basin consists of a given basin of attraction
or unions of them. However, other issues of practical importance may be of interest
in applications, where “improved” definitions of safe basin may be required. Here,
we report some of them.

Transient Safe Basin. From the safe engineering viewpoint, an important ele-
ment consists of differentiating between steady or transient dynamics, i.e., between
long-term or short-term behavior. In fact, the (temporary) escape from a potential
well (or, more generally, from a safe given region of technical interest) during the
transient response may be unimportant in some situations, while it must be avoided
in other situations. Looking at the system response all along the time (i.e., from t �
0 to t →∞) and not only for t →∞ as done for classical (steady) safe basin, the
transient safe basin of a bounded attractor is defined as the conservative subset of
the corresponding steady safe basin, obtained by considering only the initial condi-
tions whose transient trajectories remain all the time within the chosen safe region
of the phase space (Rega and Lenci 2005; Gonçalves et al. 2007), e.g., within the
desired potential well. Yet, one can also be interested in what happens to the system
response in a finite time and alternatively define a transient safe basin as the set of
starting points whose trajectories do not escape within a maximum finite number of
forcing cycles (Soliman andThompson 1989; Thompson and Soliman 1990; Soliman
and Gonçalves 2003). Nevertheless, these definitions require time-consuming ad hoc
algorithms for the safe basin evaluation due to the online continuous check on the
state of the system. Also, additional information is usually needed to make operative
the statement of their definition, since, e.g., in the dynamical case, the boundary of
a potential well is not as clearly defined as in the static one.

True Safe Basin. The phase of periodic excitations plays an important role
in determining the system response and, accordingly, its integrity. As an example,
this has been highlighted in the problem of overturning of rigid blocks. In similar
case studies, we have to look for phase-independent arguments to correctly measure
the loss of integrity of the system. For this reason, the True Safe Basin has been
introduced, which is defined as the intersection of all safe basins when the phase
ranges over the period of the excitation (Lenci and Rega 2004a, d), i.e., this is the
smallest phase-independent set of initial conditions leading to “safe” dynamics, in
appropriate sense.

It is worth noting that, when the safe basin coincides with a (union of) classical
basin(s) of attraction, the basin boundaries—which play a major role in the system’s
dynamics—are stable manifolds of given saddles and have a clear dynamical mean-
ing and well-defined properties, so that their evolution can be studied in terms of
dynamical systems theory. This feature is not shared by the other safe basin defini-
tions.

Apart from few cases, safe basins can be determined only numerically, and to date
this is still computationally onerous for systems with more than, say, twomechanical
degrees-of-freedom.
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Overall, the definition of safe basin depends on the “safe” condition that is wished
to be analyzed. Of course, by simply changing the definition of safe basin, different
characteristics of the system response may be investigated.

It is also worth noting that, in all of the above definitions, no attention is paid to
the actual topology of the considered safe basin. In particular, nothing is said about
its shape and its possible fractality or, conversely, the extent of its compact part. The
matter is addressed in the next subsection and pertains to the distinction between
“nominal” safe basins, herein introduced, and “actual” ones.

Dynamical integrity measures. Once selected the safe basin, we can consider it as
practically stable if it is “large enough.” This correlation is correct, but the meaning
of “large enough” is not trivial and needs to be properly defined. To this purpose,
several different dynamical integrity measures have been introduced by the research
community. This is because not only choosing the safe basin but also choosing the
appropriate dynamical integrity measure strongly depends on the problem at hand.
Here comes the need of considering different dynamical integritymeasures to provide
a complete overview in assessing the robustness of a system. In the following, we
dwell on the dynamical integrity measures proposed in the literature.

The Global Integrity Measure (GIM) is probably the most intuitive and easy
dynamical integrity measure. It was introduced by Soliman and Thompson (1989)
and can be defined as the normalized geometrical hyper-volume (area in 2D cases)
of the safe basin. The GIM is a dimensionless number, usually written in percentage.
The reference value is not denoted a priori, which permits choosing the most suitable
normalizing condition. It is worth highlighting two important characteristics of the
GIM. The first one is that the GIM refers only to the safe basin (whatever it be),
without distinguishing among the individual attractors existing inside it; for this
reason, it is particularly suitable for the estimation of the dynamical integrity of a
potential well. The second one is that the GIM measures only the size (magnitude) of
the analyzed safe basin, i.e., is actually measuring the probability of catching the safe
basin. Unfortunately, this last point may be a limitation, since in many engineering
applications the probabilistic estimate of the safe basin is not fully satisfactory. In fact,
this means that theGIM is not able to provide information about the shape and nature
of the safe basin.Mainly, no distinction ismade between fractal and compact regions.
From an engineering point of view, instead, this difference is extremely relevant.
Compact areas represent a safe outcome, since in these regions small uncertainties
in the considered initial conditions do not affect the final result; conversely, fractal
areas are generally not safe, since in these regions small uncertainties may lead to a
completely different response, which may be potentially dangerous. As the GIM is
not able to differentiate between them, theGIM information is valuable, but generally
incomplete.

In addition to the GIM, in their original work, Soliman and Thompson (1989)
proposed also the Local Integrity Measure (LIM), which aims at investigating exactly
the dynamical integrity aspects not accounted by theGIM, in primiswhether the basin
is smooth or fractal. The LIM is defined as the normalized maximum radius of the
hyper-sphere (circle in 2D cases) entirely belonging to the safe basin and centered at
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Fig. 13 Dynamical integrity measures illustrated for a hypothetical 2D safe basin (gray area) with
period-1 attractor (cross). Assuming unitary reference value, a circles used in the evaluation of LIM
(black) and IF (blue); b circles used in the evaluation of ALIM (green) in the cases of anisotropic
parameter equal to β �1/2 and β �2; distance used in the evaluation of IIM– and IIM+ (orange)

the attractor. A schematic example is reported inFig. 13a. Since the circle used for the
evaluation of the LIM has to be entirely belonging to the safe basin, only the compact
parts may enter the calculation. Thus, the LIM is able to measure the compact—or
actually safe—part of the nominally safe basin, ruling out the fractal one, i.e., it is a
more conservative estimate, which is safer from an engineering point of view. The
LIM analyzes each single attractor, one by one, separately. In fact, we require the
circle used for its evaluation to be centered at the attractor. This characteristic may
be desirable when we need to investigate the robustness of each individual long-term
behavior. Nevertheless, it cannot be used when we need to analyze the robustness of
an entire potential well, where different competing attractors may coexist. The LIM
is not always computationally easy, and may be numerically onerous, especially in
the case of chaotic attractors.

Another fundamental dynamical integrity measure is the Integrity Factor (IF),
which was introduced by Lenci and Rega (2003a, b). Their aim was that of over-
coming the drawbacks of both the GIM and the LIM, without losing the advantages
of them both, specifically: (i) on the one hand, being able to investigate not only the
attractors but also the potential well, while remaining computationally easy (simi-
larly to the GIM); (ii) on the other hand, accounting for the only compact part of the
safe basin, ruling out the fractal one (similarly to the LIM). The Integrity Factor (IF)
is defined as the normalized radius of the largest hyper-sphere (circle in 2D cases)
entirely belonging to the safe basin (Fig. 13a). Note that the definition of the IF is
exactly equal to the first part of the definition of the LIM. The only difference is at
the end of the statement. In the LIM, it is further specified that the hyper-sphere has
to be “centered at the attractor,” whereas in the IF these final words are not present.
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This difference is not a mere detail, but is the main novelty of the IF criterion. Here
comes its distinctive feature. In fact, we can observe that the IF fully meets the
requirements it was intended for. Similarly to the GIM, the IF is not referred to a
particular attractor but only to the safe basin; thus it may be used to focus on the
entire potential well without distinguishing between different in-well dynamics, or,
conversely, to distinguish among them, depending on the need. Similarly to the LIM,
as the circle is completely inside the safe basin, the fractality intertwining this area
with other regions does not enter the IF evaluation; thus, the IF considers only the
compact “core” of the safe basin.

Other distance-based measures of dynamical integrity have been proposed in the
literature. The Protection Thickness of a period-K attractor with K disjoint subsets
of cells in the state space is defined as the minimum of the K distances between each
subset and the set of multidomicile cells (Sun 1994); though being formulated in
the generalized cell mapping terminology (Hsu 1987; Hsu and Chiu 1987) and with
also a view to the effect of random disturbances (Sun and Hsu 1991), the protection
thickness is nearly identical to the LIM. In the stochastic framework, specific indi-
cators have been proposed. The Stochastic Integrity Measure (SIM) (Soliman and
Thompson 1989, 1990) quantifies the effects of a noise excitation superimposed to
a basic deterministic (harmonic) excitation, by correlating them with the geomet-
ric changes experienced by the deterministic basin of attraction. The Ratio of Safe
Initial Points (Gan and He 2007) estimates the probability that the system works sat-
isfactorily in a given limited domain within a specified time interval. The Maximum
Speed of Erosion (σ ) (de Souza Jr. and Rodrigues 2002) is an indicator of loss of
global safety which quantifies the swiftness with which safe basins are lost as the
excitation amplitude is increased, thus accounting mostly for the system robustness
in the control space (see Sect. 3.2 forward).

No one of the aforementioned measures relying on distance-based criteria
accounts for possible inhomogeneous sensitivities of the state-space variables to
perturbations. Yet, in practical applications, a system could be primarily affected by
perturbations in one of its characteristic quantities (velocity or position). The Impul-
sive Integrity Measure (IIM) (Soliman and Thompson 1989), defined as the distance
between the attractor and the nearest boundary of the basin along the direction of the
velocity coordinate (Fig. 13b), was developed to deal with impulsive problems just
in this perspective. It aims at accounting for the sensitivity of an attractor subjected
to impact loading, in order to get information about the size of the impulse that could
be safely sustained.

More generally, non-equidistant measures can better account for inhomogeneous
sensitivities of the state-space variables to perturbations, thus allowing a more con-
fident and targeted identification of the safe regions. With reference to the 2D case,
anisometric integrity measures have recently been introduced as improvement and
generalization of the LIM and the IF (Belardinelli et al. 2018). The Anisometric
Local Integrity Measure (ALIM) is defined as the maximum of the two semi-axes of
an ellipse centered in the safe attractor and totally contained in the largest com-
pact (i.e., safe) portion of the basin (Fig. 13b), and is thus non-equidistant in the
state-space coordinates. It requires fixing a priori the ratio β (anisometric parame-
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ter) between the axes of the ellipse along the velocity and displacement directions,
which reflects the different sensibility along the two directions. Analogously, the
Anisometric Integrity Factor (AIF) corresponds to the maximum of the two semi-
axes of the biggest ellipse totally contained in the safe basin: as in the IF, its center
is not constrained in the basin attractor, and thus is “free” to move within the basin
to accommodate jagged surfaces.

A substantially different theoretical approach to identify a reliable measure of
the sole compact part of the safe basin excluding fractality from the calculation was
suggested by Lenci et al. (2013). The idea is that of (i) keeping using the dynamical
integrity measures already existing in the literature, but (ii) modifying properly the
definition of the safe basin, so that fractal parts are eliminated (or strongly reduced).
Hence, the concept of Actual Safe Basin, which is obtained by eliminating from the
nominal safe basin all the cells which are not surrounded by cells of initial conditions
leading to the same safe basin. Accordingly, fractal parts are no longer present (just
someminimal fragmentsmay subsist, which are effectively inessential) and the actual
safe basin has a substantially compact shape (however, it may be disconnected). Once
preliminarily eliminated (reduced) the fractal parts,weno longer need to pay attention
to the definition of the dynamical integrity measure. For instance, we can take the
GIM (which is the easiest one). To remember that we are considering the actual safe
basin, we name it Actual Global Integrity Measure (AGIM), i.e., the GIM is referred
to the “nominal” safe basin, whereas the AGIM to the “actual” one.

In summary, as highlighted, all the reported dynamical integritymeasures are con-
ceptually different from each other, since each one has been proposed to investigate
a specific issue. Of course, other dynamical integrity measures relying on alterna-
tive criteria could be introduced, and further generalizations could be made. The
former, e.g., by making reference to mechanical (energy-based) concepts instead
of geometrical ones; the latter, e.g., by extending the 2D anisometric measures to
higher dimensional systems, upon fixing the ratios between all the N-axes of the
hyper-ellipsoid in the N-dimensional phase space, or by implementing an automatic
search of the bounding ellipse (or other geometrical figures) giving rise to the “worst”
dynamical integrity evaluation. More generally, it stands to the designer selecting the
most appropriate measure according to the information needed.

3.2 Robustness in the Control Space

Dynamical integrity profiles. To have a comprehensive overviewof the global safety
of a system, we usually need to investigate in detail the evolution of its dynamical
integrity when varying one or more parameters of interest. This is essential to detect
the range where the desired outcome can be effectively observed in experiments and
practice. In this regard, an engineering integrity diagram quantifying the reduction
of the safe basin when increasing the driving parameter under consideration was
proposed seemingly for the first time in Thompson and Ueda (1989), together with
Thompson (1989).
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The dynamical integrity profile is obtained by plotting the dynamical integrity
measure as a function of the driving parameter, i.e., it offers a complete description
of the global effects of a one-parameter variation in the control space. Many different
outlines may arise. A schematic is illustrated in Fig. 14, which represents a common
case of interest in a safety perspective, wherein the dynamical integrity decreases as
increasing the parameter values. Three basically different parameter regions can be
observed, which are typically encountered in systems, although with different shapes
and extents. We analyze them, highlighting where we can rely on the sole outcomes
of the classical local stability theory andwhere, instead, we have to investigate further
and develop a deep insight into the global safety concepts.

In the first region (left side of the profile), both the theoretical and the practical
stability are ensured. The desired solution theoretically exists andpresents an elevated
dynamical integrity (about the 100%), which enables to absorb the disturbances
inevitably encountered in real-world applications. The structure can safely operate
under realistic conditions. In a region of this kind, the local stability analysis is
sufficient and a detailed global safety analysis can be omitted. This observation
confirms and supports the fact that the latter is commonly not performed in many
systems (e.g., in the case ofweak nonlinearities). In fact, if the a priori calculation of a
reference basin of attraction guarantees that elevated dynamical integrity properties
are regularly achieved in the range of system operating conditions, the system is
automatically in a safe situation without any need of further global investigations.

In the second region (middle part of the profile), even if the theoretical stability is
ensured, the practical stability may be not guaranteed. Although the desired solution
theoretically exists, it is paralleledwith a varying dynamical integrity, whichmay rise
up to elevated values as well as drop down to residual ones. As a consequence, the
range(s) of practical existence of the desired solution may be smaller, and sometimes
considerably smaller, than the one of theoretical existence. Thus, there is no need
to avoid from scratch this region, since it offers the possibility to have one or more
subsets of parameter values where we can safely operate the system; nevertheless,
we need to reliably detect them. In a region of this kind, the local stability analysis
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has to be complemented by the global safety investigation, in order to assess where
safe conditions are guaranteed with adequate safety targets.

In the third region (right side of the profile), the desired solution does no longer
theoretically exist. To detect the boundary of theoretical disappearance, the local
stability analysis is sufficient and there is no need to resort to the assessment of
global safety, which is expected to confirm the results of the former.

We further focus on the intermediate region, since it is the one where a detailed
global safety analysis is necessary. We can qualitatively distinguish between two
different subregions, one on the left-hand side, where the dynamical integrity remains
elevated although being slightly reduced, and the other on the right-hand side, where
the dynamical integrity is practically residual and further decreases down to the
theoretical disappearance of the desired behavior.Note that, depending on the system,
the transition fromone subregion to the othermay be sudden or gradual, which affects
the relevant extents.

The first subregion is still robust against disturbances, since it has lost only a small
percentage of dynamical integrity, i.e., we can continue to safely operate the system
in this range. The second subregion, instead, has critically lowered its dynamical
integrity. While the classical stability analysis indicates a certain final response, the
global safety analysis clearly alerts that this is completely vulnerable to disturbances,
i.e., in practice the system is not able to exhibit it but will switch to another more
robust response. It is worth highlighting that this dangerous reduction of dynamical
integrity is not forewarned, since there are no features in the system’s behavior that
may raise the suspect of this dramatic fall of structural safety; we can anticipate it
only by resorting to the global safety analysis. Thus, for all these reasons, the second
subregion is unsafe and the designer is called upon to avoid working there, where
the coefficients of safety are insufficient.

Bifurcations entailing reductions of dynamical integrity. The reduction of system
global safety is commonly due to the occurrence of topological mechanisms, usually
global bifurcations. These phenomena are central for understanding the system’s
dynamics under realistic conditions and also for their control. We recall some of
them.

Drastic changes of dynamical integrity are typically related to homo/heteroclinic
bifurcations of some saddles and to the erosion phenomena associated with them. In
fact, when a homo/heteroclinic bifurcation takes place, it triggers the erosion of the
involved basin. The basins of the surrounding attractors start entering inside it with
incursive fractal tongues and reducing itsmagnitude. Then, the erosion proceedswith
different mechanisms, which are usually extremely complex and may involve sec-
ondary homo/heteroclinic bifurcations. The erosion ends with the complete destruc-
tion of the involved basin, i.e., with the disappearance of the corresponding attractor,
which leads to the onset of other dynamical regimes.

Particularly concerning, and indeed quite common, is the case of the
homo/heteroclinic bifurcation of a hilltop saddle, which triggers the erosion of the
entire potential well. In fact, the hilltop saddle is the globally organizing saddle
which governs the whole system dynamics (or most of them). Its invariant manifolds
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(homo/heteroclinic orbits) delimit the potential well and constitute a barrier against
the penetration of trajectories from the out-of-well attractors. Once this protecting
barrier has been broken by the global homo/heteroclinic bifurcation, the well starts to
be eroded by them, which finally fill it. This may be dangerous, especially in systems
of the softening type, where the eroding out-of-well attractor is the escape, and the
erosion process finally leads to the failure of the structure.

Yet, the hilltop saddle is not always the one whose invariant manifolds tangency
and following intersection are actually responsible for the possibly sharp fall down
of the erosion profile. Other saddles relevant to competing basins of attraction within
the potential well may also play this role, with some ensuing difficulties as regards
both their reliable detection and a possible control aimed at preventing/delaying the
manifolds intersection, which has to be implemented in purely numerical terms (see
Sect. 4 of Settimi and Rega (2018) in this book), contrary to the hilltop saddle case
where an analytical Melnikov-based procedure is also possible (see Sect. 5 forward).

The dynamical integrity may be reduced not only by the erosion but also by the
shrinkage of the basin with respect to a competing one, which corresponds to a reduc-
tion of robustness of the relevant attractor. This typically occurs in the neighborhood
of the saddle-node local bifurcations marking the transition from a bistable (coexist-
ing resonant and nonresonant solutions) dynamic regime to a monostable (resonant
or nonresonant) regime within a safe potential well. Their global effects consist of
the progressive contraction of the basin of the previously dominant attractor down to
its final disappearance, and of the parallel expansion of the basin of the competing
attractor which ends up remaining the sole one in the well.

In this context, another unsafe and potentially dramatic dynamical situation is
represented by the boundary crisis (Grebogi et al. 1983; Nayfeh and Balachandran
1995), which is the global bifurcation event entailing the sudden disappearance of a
chaotic attractorwhen it collideswith the saddle pointwhose stablemanifold delimits
its basin. Below the bifurcation threshold, the state of the system is definitely safe,
with an uncorrupted basin of attraction, if it is guaranteed that the system parameters
undergo only small changes. At the bifurcation point, instead, the chaotic attractor
suddenly vanishes and its former basin is captured by another, possibly unwanted,
coexisting attractor (e.g., an in-well chaotic attractor is replaced by a cross-well one),
with a variety of possible topological patterns.

3.3 A Novel Criterion for Load Carrying Capacity

A novel paradigm. We have observed that the effects of the (non-necessarily small)
imperfections always present in the real world must be considered in general terms
by referring to perturbations either of the initial conditions in the phase space or
of the system parameters in the control space. The former may directly drive the
response out of the safe basin toward a different, more robust, attractor (bounded
or unbounded), when the basin itself is too small and/or too eroded; the latter may
indirectly prevent from the possibility to actually realize the desired response, owing
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to the associated meaningful, and possibly sudden, reduction of dynamical integrity
entailed by also small parameter variations.

Accordingly, the load carrying capacity is robustly achieved if the system is able
to sustain changes in both the initial conditions and in the control parameters without
changing the desired outcome, i.e., provided that:

(i) the solution/attractor of interest is practically stable, namely, it is characterized
by a nonresidually integer (i.e., a suitably large and compact) basin, which
allows to sustain the effects of finite changes in the initial conditions;

(ii) such a nonresidually integer basin is robust with respect to small changes in the
control parameters values.

The combination of both these conditions allows detecting all the parameter ranges
where the system is effectively reliable under the expectedmagnitude of disturbances.
A further safety step consists of verifying whether such a minimum acceptable value
of generalized dynamical integrity—which governs the practical stability of a solu-
tion/attractor—is actually kept when varying other control parameters in such a way
to guarantee a satisfactorily uniform system safety.

Thus, the dynamical integrity offers a novel paradigm for evaluating the load
carrying capacity of a system. This point will be extensively resumed in Sect. 6,
which is entirely focused on the dynamical integrity approach in the design stage, in
view of safely making use in applications of all the potential of the system.

Overall, as far as the problem of practical stability of structures is concerned, it
is the authors’ opinion that upon assuming the Thompson global safety perspective
the issue of system load carrying capacity can be considered as definitely understood
from a theoretical point of view, although much work is still needed in the direction
of practical applications of the underlying ideas.

System’s dynamical integrity scenario. Before proceeding with the dynamical
integrity investigation in different case studies, it is worth briefly dwelling on the
erosion of the potential well. The well reflects the mechanical and mathematical
characters of a system, and its analysis is fundamental for a comprehensive knowl-
edge. As observed in the previous section, when the homo/heteroclinic bifurcation
of the manifolds of the hilltop saddle(s) occurs, it triggers the erosion of the well,
which then increasingly proceeds. All this scenario has very important consequences
in terms of both dynamics and dynamical integrity.

Specifically, depending on the out-of-well attractor onto which the system settles
down after exceeding the potential barrier, we can distinguish between softening and
hardening systems.

Softening systems. The system dynamics escape to “infinity.” This is the case
where, after the escape, the motion is theoretically unbounded. In fact, after the
escape, there are no more mechanical resources to keep the dynamics bounded out
of the well and the response is forced to inevitably diverge to infinity. The “infinity”
attractor is the eroding attractor. We observe an increasing mutual tangling of its
basin of attraction with the basin of attraction of one or more bounded attractors.
The “infinity” attractor penetrates with fractal tongues inside the potential well and
increasingly erodes the safe bounded area up to the total destruction of the well.
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This scenario where the trajectories rapidly approach infinity physically corre-
sponds to the actual failure of the system, which is definitive and immediate. This
outcome is usually destructive. Mechanical situations of reference in this respect are
the capsizing of a rolling ship in ocean waves (Thompson et al. 1990), the overturn-
ing of a rocking rigid block under periodic acceleration of its basement (Lenci and
Rega 2005), etc. However, there are technical situations wherein realizing a regime
nominally “at infinity” is, on the contrary, highly desirable. For example, in aMEMS
device (Younis 2011), the escape has the physical meaning of pull-in phenomenon,
i.e., the collapse of the device onto the electrically charged substrate. When the
MEMS is designed to be used as a resonator or sensor device, we are called to avoid
the pull-in behavior; conversely, when it is designed to be used as a switch device,
we are called to look for it.

Thus, in a softening system, the erosion is typically dangerous (usually much
more dangerous than in a hardening system), even if of course this strongly depends
on the specific problem at hand.

Hardening systems. The overall system dynamics still remains bounded,
although being no more restricted within the reference well. This is the case where,
after the escape, the motion develops entirely within a neighboring bounded well
or it wanders around, e.g., two wells (the reference and a neighboring one). In fact,
after the escape, the dynamics cannot go to infinity due to the system positive stiff-
ness for whatever large displacements. The erosion of the analyzed well is due to
the interpenetration of basins from adjacent wells, which basically do not change in
magnitude but simply become tangled. The eroding attractor(s) is (are) that (those)
of the neighboring potential well and vice versa.

Despite the tangling between the wells, only (safe) bounded behaviors can be
expected. There are several classes of motion pertaining to such after-escape non-
destructive regimes. The out-of-well phenomenon that typically sets on after the
escape consists in chaotic attractors scattered between adjacent wells (the so-called
cross-well chaos), although regular scattered attractors may also arise. They are quite
common in systems. Scenarios of this kindmay be observed for instance in a two-well
Duffing-type oscillator (Lenci and Rega 2003b).

Depending on the application, such kinds of dynamics may need to be avoided or
somehow controlled. However, technical situations can be devised wherein realizing
alternating dynamic regimes between the reference well and an adjacent one can
even be desirable. For example, the shift between oscillating (in-well) and rotating
(out-of-well) regimes in a planar pendulum subjected to vertical harmonic excitation
of its support has been advised for application in energy extraction (Wiercigroch
2010; Lenci and Rega 2011a).

Thus, in the hardening case, the out-of-well phenomenon is often unpleasant
from the application viewpoint. However, it does not usually destroy the structure
(immediately).

Both in softening and hardening systems, to study the detrimental effects of the
erosion, the typical approach is that of deepening the dynamical integrity analysis
progressively step by step, starting from the potential well, and then, depending on
the obtained outcome, proceeding further with additional investigation.
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Fig. 15 System’s dynamical integrity scenario

In fact, if the dynamical integrity of the well is elevated, there is the possibility
to effectively operate the system within the desired well; in this case, exploring in
depth the in-well dynamics may be worthy, e.g., by analyzing the individual in-well
attractors. On the contrary, if the dynamical integrity of the well is residual, there is
no possibility to effectively operate in these conditions; in this case, refining in depth
the simulation is not so worthy, since each individual attractor will certainly be more
vulnerable than the well containing it.

Of course, we would better refer to a dynamical integrity measure or another
depending on the objective of the study, i.e., for a comprehensive knowledge,we need
to combine the achievements coming from different dynamical integrity viewpoints.
A schematic flowchart of the overall system’s dynamical integrity scenario is shown
in Fig. 15.

3.4 GIM, LIM, and IF: A Comparative Study

In the following, we report a case study where the system’s dynamics are particularly
rich. To address this complex behavior, we need to analyze its structural safety from
different perspectives. Accordingly, different definitions of safe basin and different
dynamical integrity measurements are considered. The combined use of different
dynamical integrity tools is essential to raise the analysis to advanced levels of
knowledge. This investigation is extracted from Ruzziconi et al. (2013e), which we
refer to for more details.
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A slacked carbon nanotube electrically actuated. Nanoelectromechanical systems
(NEMS) are a growing area of research, which extends the microelectromechanical
systems (MEMS) technology to the nanoscale (Younis 2011). We examine a NEMS
constituted by an electrically actuated single-walled slacked carbon nanotube (CNT).
The electrode is placed directly underneath the CNT, at a certain distance d, which
shrinks along the length of the nanotube due to the slacked configuration, Fig. 16.

We investigate the nonlinear behavior in a neighborhood of the first symmetric res-
onance frequency. The considered single-mode reduced-order model of the system’s
response is (Ruzziconi et al. 2013e)

ẍ + 0.01ẋ + 1390.2x − 11570.8x2 + 36392x3

− 0.26577

(0.56866 − x)2
(VDC + VACcos(�t))2 � 0 (7)

where x(t) is the modal coordinate amplitude, VDC is the electrostatic voltage load
(in the following assumed as fixed and equal to VDC �1 V), and VAC cos(�t) is
the electrodynamic excitation with voltage VAC and frequency �. The analysis is
performed as the last two driving parameters are varied. The system has a single
potential well with escape direction. In the present case, escaping means dynamic
pull-in, which is completely unsafe and dangerous from a practical viewpoint since
it leads to the failure of the device.

Thanks to the inherent nonlinearities, several principal attractors with different
characteristics exist and compete in robustness, which may be desirable in CNT
applications (Xu et al. 2017). They are named for convenience A, B, C, and D.
An example of this multistability is depicted in the frequency response diagram in
Fig. 17,where (i)A andB are the nonresonant and the resonant branches, respectively,
overall exhibiting bending toward lower frequencies; (ii)C enlarges its oscillations at
increasing frequency values and exists for a wide range, which exceeds the window
shown in the figure; and (iii) D performs very large motion. Additionally, various
minor attractors are observed which, differently from the principal ones, rapidly
appear and disappear surviving only in narrow parameter ranges.

We focus on the attractor-basins phase portraits at ��33 when increasing VAC ,
Fig. 18. The basins of B and C are, respectively, orange and green, the basins of
the minor attractors are in the grayscale, and the escape is white. At VAC �2 V in
Fig. 18a, there are only B and C. The compact regions of their basins are close to
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of each attractor (dashed line)

each other. They are large, but not so extensive with respect to the whole potential
well. Fractality amply broadens, surrounding these compact cores.

At V AC �5 V in Fig. 18b, some minor attractors emerge. Each basin is small
and mainly fractal, but all of them are able to cover substantial parts of the phase
space, which considerably increases the probability to catch them in applications.
They contribute to further expand fractality at the expense of the safe compact areas
of the principal basins. Up to this voltage, the escape is located outside the fractal
region, but slightly increasing VAC the scenario suddenly changes.

AtVAC �6.4 V in Fig. 18c, the escape enters the potential well, completely erodes
the extensive fractal region, strongly reduces the basins of B and C, and separates
them from each other. This produces an increasing vulnerability to dynamic pull-in.
Other minor attractors appear and definitely deteriorate the integrity of the principal
ones. Thus, the CNT is unsafe actually well before the inevitable escape, which
occurs at about VAC

∼�9.2 V.
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Fig. 19 Dynamical integrity
profiles of IF for the
potential well
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The potential well (IF). We examine the system’s dynamical integrity. We start the
investigation by analyzing the potential well, i.e., all the bounded attractors taken
together. Our aim is that of understanding the parameter ranges where the well
remains wide enough, in order to tolerate disturbances in the initial conditions and
avoid the escape (dynamic pull-in). Since we focus on the potential well, the safe
condition is represented by all the initial conditions leading to a bounded motion,
whereas the unsafe condition is represented by the escape solution. Hence, we con-
sider as safe basin the union of the basins of all the bounded attractors.

To measure its dynamical integrity, we resort to the IF (an example of the circles
is reported in Fig. 18a in solid line). In fact, since the circle does not refer (is not
centered) at a particular attractor, this measurement is able to investigate in general
and easily the entire potential well. Also, it allows considering only the compact
“core” of the safe basin, ruling out its unsafe fractal tongues with the escape. Note
that when the escape enters the well, it separates the compact area of boundedmotion
into several smaller parts, e.g., in Fig. 18c. According to the considered definition of
safe basin, the IF has to be computed in the largest of these parts. This is in agreement
with our purposes, since we wish to examine if at least the largest bounded area is
still robust. As normalizing condition, it is assumed the case at VAC �0.005 V, i.e.,
next to the unforced dynamics where the well approximately achieves its maximum
extent.

To analyze the changes in the well’s dynamical integrity, we build the integrity
profiles, where we calculate the IF as a function of the frequency, at a certain fixed
VAC value. Some of the curves are shown in Fig. 19. They are obtained by performing
several attractor-basins phase portraits, evaluating the IF, and plotting the profile.

In this parameter range, the IF is nearly independent of �, but depends on the
value of VAC . When the voltage is small, e.g., at VAC �2 V, the well has an elevated
dynamical integrity (IF ∼�95%), which suggests the possibility to operate the nanos-
tructure in safe conditions, far from the danger of pull-in. This safe region continues
to exist for a wide parameter range. At VAC �4 V, the well is still robust, since the
IF reduces, but remains very high, mainly over the 75%. At VAC �6 V, instead, the
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Fig. 20 Dynamical integrity
chart of IF for the potential
well
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integrity of the well completely drops and becomes nearly residual, with IF ∼�20%,
i.e., the danger of dynamic pull-in increases considerably and arises much before the
theoretical inevitable escape.

To describe the overall dynamics when both the frequency and the voltage are
varied, we draw the integrity chart reported in Fig. 20. It illustrates the curves of
constant percentage of IF. They are obtained as a contour plot of several integrity
profiles, where a sampling grid of�≤1 and VAC ≤1 V or less has been used.We can
identify three parameter ranges with three different behaviors. The first range is VAC

� [0; 5] V, wherewe can find safe conditions. In fact, the contour curves are distanced
between each other, i.e., the deterioration of the dynamical integrity is rather small,
slow, and approximately gradual. This range is worth for a further analysis, in order
to understand which attractor may be expected to effectively operate the device.

The second range is VAC � [5; 6] V. Here, the contour curves are close to each
other, and the system quickly switches from IF >55%, where it is able to tolerate
considerable disturbances in safe conditions, to IF <20%, where it is totally vul-
nerable. This clearly detects the voltage range where the penetration of the escape
destroys the well and alerts that the deterioration occurs suddenly, within a very
small interval. To protect the nanostructure, we are required to assume in the design
adequate coefficients of safety, which are able to keep any application far from this
threshold.

The third range is VAC � [6; 9.2] V. In this last case, the dynamical integrity never
exceeds IF �20% and keeps slowly decreasing up to the inevitable escape. The well
has lost much of its robustness. Disturbances typically encountered in experiments
and in practice likely will lead to dynamic pull-in. This range is not worthy to further
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refine the simulations in order to detect the behavior of specific attractors, since they
are equally or even more vulnerable than the entire well.

The probability of the attractors (GIM).We further investigate the rangeVAC � [0;
6] Vwhere the well is robust, in order to explore the dynamical integrity properties of
the in-well attractors. Initially, we consider each single attractor separately and ana-
lyze if it is paralleled with a wide basin of attraction. If its magnitude is very narrow,
from a practical point of view the corresponding attractor does not exist; otherwise,
it may effectively operate the device and may deserve further investigations.

The safe basin is the basin of attraction of each considered attractor, i.e., the safe
condition consists of the initial conditions leading to the attractor under investigation.
Wemeasure the dynamical integrity of each safe basin using theGIM which includes
both the steady dynamics (compact area around the attractor) and the transient (e.g.,
thin fractal and/or smooth tongues). This indicates that the GIM is able to provide
information on the probability to catch each single attractor. From a computational
point of view, the rest of the analysis is similar to the one developed in the previous
subsection.

InFig. 21,we report the integrity profile ofGIM forA (blue),B (orange),C (green),
and D (violet). For comparison, we show also the GIM of the whole potential well
(all the bounded attractors together, black), and the GIM of the minor attractors
(all of them together, gray). At VAC �2 V in Fig. 21a, the magnitude of the well
is practically maximum. It is mainly covered by both B and C, which may reach
and overcome GIM �40% (except at �<34 in B). The integrity of A is usually
smaller, GIM ∼�10–20%, and becomes residual both at �∼�32, where the extent
of the already fractal part of its basin reduces noticeably, and in a neighborhood of
the disappearance of the attractor. Similarly, D never exceeds GIM �20%. Minor
attractors appear only at �∼�31–32, and actually they do not exist under realistic
conditions because their GIM is too small.

Increasing VAC , instead, the profile is completely different. At VAC �6 V in
Fig. 21b, the total wideness of the potential well reduces (GIM ∼�20–30%). We can
note that when the escape basin penetrates, it not only destroys the compact areas of
the well (as observed by analyzing the IF) but also strongly reduces the probability
to catch a bounded motion. A part of the well consists of the basin of B and C. The
other part, instead, is due to the basins of minor attractors. At this voltage, they exist
along all the analyzed �-range and the magnitude of their basins is non-trivially
larger. Their GIM recurrently overcomes the GIM of the principal ones (even if each
one of them, taken separately, has a small basin). They can be no longer neglected
to the aim of identifying the actual dynamical outcome.

The general outline is described in more detail in the integrity charts in Fig. 22.
Despite the extensive fractality and the multistability, this analysis is able to indicate
which attractors can be effectively observed. Their number is smaller than the number
of theoretical attractors.

At VAC � [0; 4] V, attractor B can practically appear in all the analyzed range,
except in the trapezoidal region ranging fromVAC �1V and�∼�31–32 toV AC �4V
and �∼�31–35, where the GIM is residual, Fig. 22a. Similarly, the GIM of attractor



www.manaraa.com

Dynamical Integrity: A Novel Paradigm for Evaluating … 69

(a)

(b)

0

10

20

30

40

50

60

70

80

90

100

31 32 33 34 35 36 37 38

31 32 33 34 35 36 37 38

G
IM

(%
)

Frequency

D
M

CB

A

W

0

10

20

30

40

G
IM

(%
)

Frequency

C
B

M

W

Fig. 21 Dynamical integrity profiles of GIM for the probability of the attractors at a VAC �2 V;
b VAC �6 V. Attractor A, B, C, D, and minor attractors M are, respectively, blue, orange, green,
violet, and gray. The potential well W is black

Frequency
31

0.0

V
A

C
(V

ol
ta

ge
)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

32 33 34 35 36 37 38 31 32 33 34 35 36 37 38

50
40

60
70

SN (B)

30

20

10

4050

20
10

30
30

Frequency

0.0

V
A

C
(V

ol
ta

ge
)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

10
20

30

40

40

30

20

10 10

50

40
50

40

SN (C)

(a) (b) 

Fig. 22 Dynamical integrity charts of GIM for the probability of occurrence of a attractor B and
b attractor C

C is fair up to VAC �4 V, except for a tiny range close to its saddle-node bifurcation,
Fig. 22b. At V AC � [4; 6] V, the dynamical integrity of B and C drops, whereas the
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GIM of all the minor attractors increases; moreover, their basins of attraction usually
develop close to the escape, as shown in Fig. 18. This confirms and underlines the
increasing danger of behavior at higher VAC values, as alerted in the IF dynamical
integrity analysis of the potential well (previous subsection).

The practical disappearance of the attractors (LIM). As previously observed, the
principal attractors (especiallyB andC) are by far more likely to occur. Nevertheless,
a high probability does not guarantee to operate the systemwith them. This is because
in many parameter ranges these attractors are paralleled with a small compact part of
their basins of attraction, which may be not robust enough to tolerate the inevitable
uncertainties in the initial conditions. Consequently, the attractor may practically
disappear, e.g., it may jump to one of the highly probable coexisting motions.

To have a more detailed description, we consider the attractors that have large
probability of occurrence and we examine their practical disappearance, in order to
have information about the range where each one of them can be reliably observed
under realistic conditions. Operatively, we focus on each attractor, consider as safe
basin its own basin of attraction, and measure the dynamical integrity via the LIM,
which provides a good estimate of the integrity also in case the attractor is eccentric
with respect to the safe basin. Examples of the circles for the LIM evaluation are
reported in Fig. 18a in dashed line.

The LIM is not very wide for all the attractors. At VAC �2 V in Fig. 23a, the
resonant B shows LIM ∼�8% in �∼� [31; 34], then a sudden increment at �∼�34.5,
which is related to the disappearance of A, and finally LIM ∼�20–30% in �∼� [35;
38]. Attractors A, C, and D never exceed LIM �12%, i.e., they practically exist only
if very small disturbances are ensured. Increasing VAC , the LIM further reduces.
At VAC �6 V in Fig. 23b, both B and C are equipped with a very small integrity,
with LIM ∼�7–12%, which drops at �∼�32, where both basins are affected by minor
attractors.

Fig. 23 Dynamical integrity
profiles of LIM for the
practical disappearance of
the attractors at a VAC �2 V;
b VAC �6 V. Attractor A, B,
C, D, and minor attractors M
are, respectively, blue,
orange, green, and violet
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Fig. 24 Dynamical integrity charts of LIM for the practical disappearance of a attractor B and b
attractor C

In Fig. 24, we show the integrity charts for B and C. They confirm that there are
rangeswhere these attractorsmay be vulnerable to disturbances, despite the relatively
large magnitude (GIM) of their basins. For B in Fig. 24a, the major LIM occurs at
�>33 and becomes wide at �>35, where LIM ∼�20–35%, which may guarantee to
safely observe this motion also in case of large disturbances. For C in Fig. 24b, the
LIM has maximum percentage at about VAC � [2.5; 4] V, but never reaches elevated
values.

Therefore, there are many parameter ranges where the attractors are equipped
with a meaningful GIM and a very small LIM, e.g., C has GIM �30–40% and LIM
�10–12.5% at VAC �1.5 V. This means that there is a good probability to catch the
attractor, but we cannot ensure to keep operating the device with this motion (also at
small VAC values), since disturbances may make it disappear in favor of switching to
another attractor. Further deepening the analysis, we may need to understand (where
possible) if this disappearance will lead to a safe jump to another bounded motion
or to dynamic pull-in. For this additional dynamical integrity investigation, we refer
to Ruzziconi et al. (2013e).

Overall, despite the complexity of the system’s behavior, the combined use of
both the IF and the GIM narrows it down to a small effective parameter range and
to a few operating attractors; the LIM highlights the actual possibility to operate
with a desired attractor, due to the topological sensitivity of its basin to inevitable
uncertainties.

Therefore, the present case study illustrates a synergic combination among dif-
ferent dynamical integrity tools.



www.manaraa.com

72 G. Rega et al.

4 Dynamical Integrity: Analysis

In the present section, we focus on the analysis of the overall evolution of the global
safety, in view of a safe engineering “use” of the system. Two different case studies
are presented, specifically a pendulum parametrically excited (Sect. 4.1) and a rigid
block (Sect. 4.2).

The pendulum parametrically excited offers a complex nonlinear behavior. The
dynamical integrity analysis is seen to provide valuable information about the robust-
ness of competing solutions of different interest from an applicative viewpoint. Evi-
dent effects on the global safety are induced by dynamical events, which are analyzed
by combining results from different complementary measures.

The rigid block represents a nonclassical problem. Here, we address the issue of
extending the dynamical integrity tools in order to investigate properly its distinctive
features. Two aspects of the dynamical analysis are emphasized, which typically do
not arise in classical systems, i.e., (i) the interest toward the outcome of a specific
initial condition of mechanical interest, instead of the whole dynamics, and (ii) the
introduction of an alternative—and more reliable for the present case (and similar
ones)—definition of safe basin, which accounts for the effect of the phase excitation.

Additional models will be considered in the forthcoming sections.

4.1 The Parametrically Excited Pendulum

The pendulum parametrically excited was extensively analyzed in the literature,
e.g., the main nonlinear dynamical features have been examined in depth by Szem-
plińska-Stupnicka et al. (2000). We start with recalling the nonlinear response, to be
successively referred to for understanding integrity and erosion features. The pendu-
lum’s dynamical integrity is shown to be strongly related to the dynamical properties
of the system. The interaction among competing dynamic solutions (oscillations and
rotations) is explored as part of a broader project aimed at developing advanced tech-
nologies for the extraction of energy from sea waves (Wiercigroch 2010; Xu et al.
2005, 2007; Xu and Wiercigroch 2007; Lenci and Rega 2011a; Lenci et al. 2012a,
2013; Das and Wahi 2016; etc.). The main singularities along the integrity profiles
are associated with the occurrence of topologically meaningful dynamical events.
Further details may be found in Lenci and Rega (2008).

Mechanical model and principal dynamical features. The nonlinear dynamics of
the parametrically excited pendulum in Fig. 25a are governed by the dimensionless
equation of motion

ẍ + hẋ + [1 + pcos(ωt)]sin(x) � 0 (8)

where h is the viscous damping, and p and ω are the amplitude and frequency of
the vertical oscillation of the pivot, respectively. To take advantage of the results
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Fig. 25 a Parametrically excited pendulum. b Undamped unforced phase portrait

in Szemplińska-Stupnicka et al. (2000), we consider h �0.1, which is the damping
assumed in that paper; of course, the general findings are expected to hold also for
a different value. We investigate the pendulum in correspondence of the principal
parametric resonance, ω �2.

The phase portrait of the undamped unforced system is depicted in Fig. 25b. There
are “small” amplitude (in-well) oscillations around the rest position xr �0 and “large”
amplitude (out-of-well) rotating solutions. They are divided by the homoclinic orbits
of the hilltop saddle xs �π (or xs �–π , since they coincide due to the periodicity
of the system), which separate the rotating from the oscillating regions in the phase
space.

Adding damping and excitation, dynamics increase their complexity. We report
the bifurcation diagram at p ∈ [0, 2], Fig. 26. There are four competing attractors.
The first one is the rest position, which turns into the inverse saddle (Ir) through a
Hopf (H) bifurcation at p ∼�0.196. The stability is captured by the self-symmetric
oscillating period-2 solution (O2), which is born simultaneously. O2 is stable up to
p ∼�1.260, where it becomes a saddle through a pitchfork (PF) bifurcation. Upon a
period-doubling (PD) cascade to chaos starting at p ∼�1.332 and ending at p ∼�1.342
by a boundary crisis (CR), the last oscillating attractors definitely disappear.

There are two rotating attractors (R1), which are born at p ∼�0.418 through a
saddle-node (SN) bifurcation, along with the associated direct saddles (DR1). One
is clockwise; the other is anticlockwise and symmetric with respect to the first (only
one is reported in the figure). R1 are stable up to p ∼�1.349, where they become
inverse saddles (IR1). Here, a classical PD cascade is triggered, definitely ending
at p ∼�1.809 by a CR after which the tumbling chaos becomes the unique attractor
(Bishop and Clifford 1996).

In addition to the previous principal attractors, there are other secondary motions.
We can see the couple (one clockwise and one anticlockwise) of period-3 rotations
R3 (again, only one is reported in the figure), born at p ∼�0.888 by a SN bifurcation
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Fig. 26 Bifurcation diagram of the attractors at ω �2. HOM1, HOM2, and HET are the thresholds
for homoclinic bifurcation of the hilltop saddle, homoclinic bifurcation of DR1, and heteroclinic
bifurcation of DR1 and Ir, respectively

together with the corresponding saddle, and undergoing a PD cascade ending by a
CR at p ∼�0.961, where R3 disappear. A self-symmetric oscillating attractor O6 of
period-6 appears at p ∼�1.082 by a SN bifurcation, loses stability by a PF bifurcation
to two O6 solutions at p ∼�1.111, which undergo a PD cascade ending by a CR at p
∼�1.118, after which O6 disappear.

Thus, in the range p ∈ [0.418, 1.342], the in-well oscillating O2 and the out-of-
well rotating R1 solutions coexist and compete with each other; in the range p ∈
[0.888, 0.961], two further competing attractors R3 are present.

Three main global bifurcations can be observed. The first one is the homoclinic
bifurcation of the hilltop saddle (HOM1) occurring for p ∼�0.367. This is the solely
global event which can be approximated analytically by means of the Melnikov
method (Guckenheimer and Holmes 1983; Koch and Leven 1985; Wiggins 1990).
While being theoretically very important because it breaks the barrier between oscil-
lating and rotating solutions, and thus permits mutual interferences, in the present
case it has no direct and observable consequences in terms of dynamical integrity,
basically because it occurs when the rotating attractors are not yet born (they appear
slightly later, for p ∼�0.418).

The second global bifurcation is the homoclinic bifurcation of DR1 (HOM2) at
p ∼�0.655. This has instead important practical consequences, since (not shown in
the figures) the unstable manifold Wu

1, which belongs to the basin of O2, becomes
tangent to the stable manifold Ws

1, which is the boundary of the basin of R1. Due to
this global bifurcation, the boundary between the basins of the rotating and oscillating
solutions becomes fractal, as clearly visible in Fig. 27b. The basin of oscillation O2
is gray, the basins of rotations R1 are blue (clockwise) and red (anticlockwise), and
the basins of rotations R3 are dark blue (clockwise) and dark red (anticlockwise). By
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comparing Fig. 27a and b, we can observe that the basins of rotation and oscillation
solutions start to tangle with each other and a mutual erosion through fractal tongues
is triggered. Also, since the unstable manifold Wu

2 belonging to the basin of R1 is
still disjoined from the stable manifold Ws

2 (not shown in the figures), the tongues
of the basin of the rotating solutions penetrate the basin of the oscillating solution,
but not vice versa, Fig. 27b. Thus, the rotating solutions are, roughly speaking, more
robust and somehow dominating. As better observed next, this has significance in
terms of dynamical integrity.

Note that the fractalization of the potential well of the oscillating solution starts
from the outer part (it is possible because the homoclinic bifurcation of the hilltop
saddle happened earlier). Initially, it tends “slowly” toward the central part of the
potential well (compare Figs. 27b and 28a). Then, the penetration undergoes an
instantaneous acceleration (compare Fig. 28a and b). This is due to the heteroclinic
bifurcation of DR1 and Ir (HET), at p ∼�0.935, which is the third global bifurcation
observed in Fig. 26. This suddenly drives the fractality around the rest position,
i.e., in the central part of the potential well. The period-2 oscillation survives in a
basin whose compact part is tightened around the corresponding two sinks in the
stroboscopic Poincaré map (Fig. 28b).

In Fig. 28a, b, the basins of attraction of the secondary attractor R3 are also visible.
R3 appear just inside the basins of attraction of R1, and thus they are basically
antagonists of R1 and not of O2. In Fig. 28a, the basins of R3 have their maximum
extent; then they rapidly decrease, Fig. 28b, until they disappear, which occurs for p
∼�0.961, i.e., just “after” Fig. 28b. Successively, after the disappearance of O2, only
R1 solutions (clockwise and anticlockwise) remain, but the attractor-basins scenario
is dominated by an extended fractality, which covers all the phase space except for
a very small compact part surrounding each attractor [not shown in the figures, see
Lenci and Rega (2008)].
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Integrity profiles. We investigate the dynamical integrity of the attractors previously
identified. Since we are interested only in the steady dynamics, we consider as safe
basin the classical basin of attraction of each attractor. Both IF and GIM are ana-
lyzed, as they provide complementary information and their combined use permits
a comprehensive understanding of the overall evolution of the integrity scenario.

We focus on the phase space window x ∈ [–π , π ] and ẋ ∈ [–4, 4], which contains
the compact part of each attractor involved in the analysis, as in Figs. 27 and 28. To
compute theGIM, themagnitude of the area of each safe basin is divided by the area of
thewindow, so that the following equality holds:GIM(O2)+GIM(O6)+2GIM(R1)+
2GIM(R3)�1. The IF, on the other hand, is normalized so that IF(O2)(p �0.42)�1.

Many attractor-basins phase portraits have been built for increasing values of
p, and for each of them both IF and GIM have been computed. This provides the
integrity profiles, namely, the curves IF(p) and GIM(p) of the various attractors,
which are reported, respectively, in Fig. 29a and 29b.
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We can observe the competition between the in-well (oscillating) and the
out-of-well (rotating) attractors. The R1 basins grow up against the O2 basin, whose
integrity is reduced up to its disappearance. This phenomenon is described by both
the IF and the GIM, although to a different extent. The integrity curves of O2
have the classical qualitative behavior of the so-called “Dover Cliff” erosion curves
(Thompson 1989). Starting from the uneroded case, they decrease quite rapidly,
meaning that the integrity of the oscillation is suddenly reduced, and, after various
phenomena, it vanishes in correspondencewith the final crisis whereO2 is destroyed.

Various localized effects are recognizable along the overall “smooth” erosion
profile of O2, which is related to continuous modifications of the relevant basin
boundaries. Such effects entail “instantaneous” reductions in the O2 integrity, as
highlighted by sharp falls in the profile. The most evident ones are marked by A and
B. They occur along the IF but not along the GIM curves, which means that GIM is
unable (or less effective) to keep trace of the underlying dynamical events triggering
instantaneous reductions in integrity.

The sharp fall labeled A in Fig. 29a occurs at p ∼�0.655 and is related to the
homoclinic bifurcation of DR1, previously illustrated in Fig. 27a, b. These figures
show that the area of the O2 basin is almost unchanged (this is why GIM practically
does not record this event), while the penetration of the tongues strongly reduces the
radius of the circle which measures the magnitude of the compact part of the basin.
Also, in conformity with the manifold tangencies, this event erodes O2 and not R1.

The sharp fall labeledB, which is the second less-pronounced sharp fall in Fig. 29a,
is a consequence of the heteroclinic bifurcation of DR1 and Ir at p ∼�0.935, as
previously illustrated in Fig. 28a, b. From the comparison of these figures, the drastic
reduction in the compact core of the safe basin of O2 is clearly revealed. This event
is hardly recognizable in the GIM profile, likely for being somehow hidden by the
almost simultaneous appearance of R3, which is the next meaningful event.

Note that the IF and GIM erosion profiles of O2 are similar from a qualitative
point of view, but they exhibit important quantitative differences mostly in the final
part of the curves. In fact, the GIM approaches zero with a nearly constant average
slope, and it is significantly larger than the IF. Thus, it overestimates the integrity,
which is instead only residual. Conversely, this fact is captured by the IF, which has
a final plateau on which IF ∼�3.5%, confirming that from a practical point of view
the integrity of O2 actually ends with the appearance of O6, i.e., at p �1.082 instead
of at p �1.342.

Particularly interesting are the integrity curves of R1, whose behavior is different
from classical erosion curves starting from a value around 100% (uneroded basin)
and decreasing, suddenly or slowly, up to 0 (disappearance of the attractor), just as it
occurs herein for O2. In contrast, R1 exhibit more involved profiles since they start
from zero, initially grow up against other pre-existing attractors (O2 in this case),
and then evolve according to their specific features, which, of course, include the
erosion of basins integrity up to their disappearance.

With reference to Fig. 29, it is worth highlighting how R1 change the “status” for
growing values of p. Initially, they actively erode other (passive) attractors. Then,
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they are eroded by the secondary attractors, and finally they disappear by a process
of reciprocal (self-)erosion at about p �1.8.

The differences between the IF and theGIM of R1 aremuchmoremarked than the
corresponding ones of O2. In fact, while theGIM is overall increasing up to the value
of 0.5, the IF initially increases, reaches a maximum around p ∼�0.75, and then starts
an overall dull decrement (apart from a sudden fall in correspondence of the existence
of the secondary period-3 rotations R3). This is a clear example of how IF and GIM
can also be qualitatively different. In particular, it appears that GIM is basically a
measure of attractor robustness, whereas IF is actually a measure of basin integrity
(or safety). From this latter viewpoint, GIM may lose important information. In fact,
from the circumstance of being GIM(R1)(p >1.342)�50%, one could entail that R1
are relatively safe in this range, which is actually not true, since their safe basin is
completely fractal, as previously described but not shown in the figures. Thus, the
stability of an attractor is not sufficient for practical purposes. In fact, no designer
would operate in the relevant situation, although the two rotations are stable, because
even small real perturbations would lead to transient tumbling chaos and possibly
to a different motion, e.g., to reverse the sense of rotation. The information about
the definite loss of integrity is instead correctly captured by IF, where IF(R1)(p
>1.342)<15%. This confirms that IF is a much more reliable measure of integrity
from a topological viewpoint, as well as a more conservative and useful indicator for
practical purposes.

The IF profile of R1 has not only a theoretical meaning. In fact, we infer
that the optimal operating condition for R1 is in correspondence with its maxi-
mum, where IF(R1)(p ∼�0.75)∼�25%. For this value, however, O2 is still robust, as
IF(O2)(p ∼�0.75)∼�50%. Thus, one can consider the possibility of increasing p, for
example, up to p ∼�0.85, where IF(R1)(p �0.85)∼�22% has decreased only slightly,
while IF(O2)(p �0.85)∼�33% has been strongly reduced (although it is still on the
left of point B). This information may be of practical importance if one is interested
in exploiting rotating solutions (Xu et al. 2007). The same reasoning does not hold
for O2, because the curve IF(O2) has no maximum.

Overall, we note that R1 undergo a “flat” IF erosion in the final part of their
diagram, although starting from a limited basin extent, while the underlying O2
undergoes the classical sharp fall (Thompson 1989). In view of applications, the
former behavior is safer, while the second is dangerous because the “failure” occurs
abruptly. The coexistence of sharp and flat erosion profiles is an interesting charac-
teristic of the considered mechanical system.

4.2 Rigid Block

The overturning behavior of rocking rigid blocks is an old and fascinating topic,
which has been attracting interest of researchers for a long time. It was origi-
nally introduced for estimating magnitudes of earthquakes from observations of the
response of columns to seismic excitations (Milne 1881; Perry 1881; Kirkpatrick
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1927), and was later dealt with to investigate the stability under ground motion of
free-standing structures, like water towers, nuclear fuel rods (Koh 1986), ancient
monuments (Oppenheim 1992), furniture in civil apartments (Winkler et al. 1995),
etc. It has an intrinsic theoretical interest due to the growing attention toward non-
smooth applications, which exhibit nonlinear features with no counterpart in smooth
systems (Awrejcewicz and Lamarque 2003).

In the following, this problem is reconsidered in terms of dynamical systems
theory. The overall response markedly depends on the excitation phase, which can
induce different final behaviors, well beyond common sense expectation. Dramatic
effects can be entailed in case the phase is free or unknown, as in seismic excitations.
For this reason, we need to look for phase-independent results. The topic presentation
is divided into two main parts. The first is concerned with the detection of upper and
lower bounds of excitation threshold for overturning, while the second is focused
on the dynamical integrity analysis based on the definition of the “true” safe basin.
These points are correlated.

Deep insights can be found in Lenci and Rega (2004a, d, 2005, 2006a, c) and in
Rega and Lenci (2005, 2008), where also additional analyses dealing with the effects
of control and anti-control are discussed.

The rocking rigid block model. We consider a slender homogeneous rigid block
rocking around base corners in a constant gravitational field, Fig. 30. Two major
simplifications, commonly used in the literature, are employed: (i) the so-called
Housner model (Housner 1963), according to which the block can only rock without
sliding and up-lifting and (ii) piecewise linear equations of motion. The former is
accurate if the block-foundation dry friction is sufficiently high or the block is inserted
in a nick, and the block is heavy enough; the latter are accurate in the case of slender
blocks.

Fig. 30 Rocking rigid block
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Based on these assumptions, the governing dimensionless equations of planar
motion are (Plaut et al. 1996)

ϕ̈ + δϕ̇ − ϕ + α + γ (t) � 0 ϕ > 0 (9a)

ϕ̈ + δϕ̇ − ϕ − α + γ (t) � 0 ϕ < 0 (9b)

ϕ̇(t+) � r ϕ̇(t−) ϕ � 0 (9c)

whereEqs. (9a)–(9b) describe the rotation aroundpointB andA, respectively;Eq. (9c)
is the Newton restitution law at the impact, which is supposed to be instantaneous.
The angle ϕ characterizes the state of the system and is measured with respect to
the vertical direction; the angle α is the block shape parameter; δ >0 is the viscous
damping coefficient; r ∈ [0, 1] is the constant coefficient of restitution measuring the
dissipation at impacts; γ (t)�∑N

j�1 γ j cos(jωt +� j) is the generic (2π /ω)-periodic
external excitation representing the dimensionless horizontal acceleration of the rigid
foundation. In the forthcoming analysis, we consider only the case of harmonic
excitation (N �1).

For δ �0, γ �0, and r �1, the system is conservative. The potential and the
associated phase portrait are depicted in Fig. 31. There is a unique potential well. This
is developed around the rest position ϕ �0 (which is a degenerate stable point) and is
delimited by two symmetric hilltop saddles ϕ1, 2 �±α. The overturned positions ϕ

�±π /2 represent the practical failure of the system (not reported in the figure). We
can observe two different kinds of behavior, namely, small non-smooth oscillations
around the rest position and large motions leading to overturning. These two classes
are divided by the heteroclinic loop connecting the two hilltop saddles.

Lower and upper thresholds for overturning. This section is aimed at obtaining
lower and upper bounds for overturning. Specifically, we detect the thresholds for
the stability of the rest position (γ stat), for the heteroclinic bifurcation (γ het), and for
the immediate overturning (γ imm). All these curves are reported in Fig. 32.
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Stability of the rest position (γ stat). If the excitation amplitude is sufficiently small,
then the external force is lesser than the gravitational force and is not able to move
the body; accordingly, the rest position is certainly stable. This threshold can be
determined analytically (Lenci and Rega 2006a). We obtain γ stat �α, which is the
well-known West’s formula (Kirkpatrick 1927). Owing to its physical meaning (no
motion), γ stat does not depend on damping, impact, and excitation frequency. Of
course, the region γ ≤γ stat is safe from overturning of the rest position, i.e., γ stat is
a lower bound for overturning. For γ ≤γ stat , the rest position is stable, although not
globally attracting as some other attractors may, and actually do, coexist.

Heteroclinic bifurcation of the hilltop saddles (γ het). This is a very important
dynamical event. Below γ het , the erosion of the safe basin is prevented, so the rest
position is safe from overturning, even if it may lose stability and change into safe, in-
well, periodic, and even chaotic small oscillations. Above γ het , instead, the erosion of
the safe (in-well) basins of attraction starts and, after an involved series of dynamical
phenomena, finally leads to their complete destruction; of course, this entails also
the overturning of the rest position.

To illustrate these facts, we report the attractor-basins phase portraits for an excita-
tion amplitude just below and above γ het , Fig. 33. In the former, the white-grays (i.e.,
out-well versus in-well) boundary is regular, although there are four safe basins of
attraction, corresponding to four coexisting periodic attractors, with in-well fractality
owing to the homo/heteroclinic intersection of other, non-hilltop, saddle manifolds.
In the latter, the erosion of the safe bounded area is increasing, as shown by the
penetration of fractal white tongues from the out-of-well solution within the gray
basins. Touching of the white with the point (0, 0) corresponds to actual overturning
of the rest position, while complete disappearance of the gray basins marks the end
of confined dynamics.
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Thus, the heteroclinic bifurcation represents a threshold above which overturning
certainly occurs for some given excitation phase. In fact, above γ het , the distance
between toppling (white) basin and rest position decreases more or less quickly, so
that the incidental overturning due to imponderable events is more and more likely.
The γ het threshold can be computed analytically and it can be proven that it depends
on the restitution coefficient r, while it does not depend on the excitation phase (Lenci
and Rega 2006a).

More in general, γ het is another lower bound for overturning, determined through
invariant manifolds arguments.

Immediate overturning threshold (γ imm). This threshold detects the excitation
amplitude above which there exists an excitation phase such that the rest position
topples down without transient oscillations in the potential well. Therefore, by defi-
nition, γ imm provides an upper bound for overturning.

An example is reported in Fig. 34a, which shows how the solution leaves the
rest position, oscillates around the right hilltop saddle, and then escapes without
impacts, i.e., without going back to the line ϕ �0. On the other hand, below γ imm,
the solution may not overturn at all, Fig. 34b, or may overturn after transient in-well
oscillations, Fig. 34c, this alternative being very sensitive to system parameter values,
as confirmed by the closeness of γ in Fig. 34b, c.

We can analytically obtain γ imm (Lenci and Rega 2006a). According to its def-
inition, it does not depend on the excitation phase. Also, it does not depend on r,
because there are no rebounds during immediate overturning.

Overturning chart of the rest position. We investigate the overturning behavior in
the excitation frequency/amplitude parameters space (ω, γ ). The analytical curves
show that the combination of γ stat and γ het provides a unique threshold γ *, which
overall bounds the overturning from below. Specifically, γ * �γ stat for ω <ω* and
γ * �γ het for ω >ω*, where ω* is the frequency where γ stat �γ het , which depends
only on δ and r. For example, for δ �0.02, r �0.95 we have ω* �5.2264. Thus, the
analytical curves individuate three different regions:
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Fig. 34 Time history starting from the rest position at δ �0.02, r �0.95, α �0.2, ω �5, ψ �
1.76628, γ imm �1.029 and a γ �1.02921, b γ �0.9, c γ �0.9011

(1) γ <γ *, where the block does not overturn (gray), and if the amplitude is very
small, not even rocks;

(2) γ *<γ <γ imm,where overturningmayormaynot occur,with a possibly bounded
transient. This is the intermediate transition region, which exhibits fractal fea-
tures;

(3) γ >γ imm, where the block directly topples (white), without transient oscillations
in the safe potential well.

The extent of these regions does not depend on the excitation phase (though being
strongly dependent on all the other system parameters), since both γ * and γ imm are
independent of ψ .

To confirm the previous “three regions” scenario, we construct the overturning
chart of the rest position, which is obtained by numerically integrating the equation
of motion and drawing a white (gray) point, if the block is toppled (untoppled). This
chart is overlapped with the analytical curves, Fig. 32. Perfect agreement is observed.

First Overturning Threshold. In the intermediate region, there certainly exists
an overturning threshold such that, by increasing the excitation amplitude for each
fixed excitation frequency, the block topples down for the first time. This threshold is
important from an engineering viewpoint. In fact, below it no overturning occurs so
that the structure is safe, although with a variable degree of reliability; on the other
hand, above it there may be alternation of overturning and non-overturning zones in
the parameters space, with a possibly fractal nature.

To investigate this point, we introduce the first overturning threshold (γ first). This
is defined as the excitation amplitude above which there exists an excitation phase ψ

such that the block finally topples, irrespective of the length of the transient and of the
number of oscillations in the potential well. In spite of its simplicity and relevance,
this definition entails that only numerical evaluations of γ first are possible, although
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the inequalities γ * <γ first <γ imm provide useful analytical estimates. The curve γ first

is also reported in Fig. 32, where we have slightly approximated it as illustrated in
Lenci and Rega (2006a).

Hence, the intermediate region can be divided into two subregions, whose mag-
nitude may considerably vary with the system parameters:

(1) γ * <γ <γ first , which is certainly protected against overturning, but with a
variable degree of confidence, and thus can be named region of impending
overturning. Here, a detailed dynamical integrity analysis is required to assess
reliability. Note that the gap between γ first and γ het is due to the fact that γ het

represents just the triggering of penetration of unsafe tongues into the safe basin;
a somewhat greater excitation amplitude is needed to enhance penetration and
allow the tongues reaching the rest position, thus giving rise to a sequence of
complex topological events ending with overturning;

(2) γ first <γ <γ imm, which presents fractal behavior; here, toppling is highly sen-
sitive to small parameter variations (as well as to initial conditions).

The Excitation Phase. It can be shown that the overturning chart is strongly influ-
enced by the excitation phase. This is able to produce different—sometimes consid-
erably different—final behaviors. In fact, it can, and actually does, occur that for a
given phase the block does not overturn, while it topples for a different one. Thus,
if the excitation phase is free or unknown (e.g., in the earthquake), dramatic effects
may arise. In such a case, there is a clear need of referring to phase-independent
results.

“True” safe basin and erosion profiles. To assess the vulnerability of the system
from overturning, we perform a dynamical integrity investigation. Contrary to other
case studies examined in this chapter, for the rigid block there is no resonance fre-
quency around which focusing numerical analyses, i.e., there are no preferred values
of the excitation frequency, and, as an example, we choose ω �3.5.

Particularly demanding is the choice of the safe basin. Since we are analyzing
the overturning, we are focusing on the in-well dynamics; in fact, when growing the
excitation, the erosion of the potential well is the triggering phenomenon for toppling.
Accordingly, we can consider as safe basin all the in-well bounded motions (union
of the classical basins of attraction of all the in-well attractors).

Nevertheless, as previously observed, in the problem of overturning we typically
have to look for results that are independent of the phase. The previous “classical”
definition of safe basin, instead, is referred to a fixed ψ . For this reason, this defi-
nition is not expected to provide adequate information in the present case study. To
overcome this limitation, the “true” safe basin is introduced. This is defined as the
intersection of all classical safe basins when ψ ranges over the period. In particular,
in the present case it corresponds to the smallest phase-independent set of initial
conditions which do not entail overturning (note that this definition of “true” safe
basin holds in general, i.e., for whatever classical safe basin it is referred to, not just
for the in-well dynamics considered in the present analysis).

An example comparing the “classical” and the corresponding “true” in-well safe
basin is reported in Fig. 35, which corresponds to the last point of the forthcoming
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Fig. 36 Erosion profiles of
GIM and IF for both
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erosion profiles, γ �0.20. Not only the magnitudes are strongly different, but the
degree of fractality is also much reduced in the “true” safe basin. Moreover, the
“true” safe basin is “closer” to the interior circle involved in the definition of the IF,
which is also reported.

In Fig. 36, the erosion profiles are shown, where both the “classical” and the “true”
safe basin are investigated, by resorting both to the GIM and to the IF. The curves
are normalized with respect to their values at γ �0.05.

Overall, all the profiles behave qualitatively in the same way. As the excitation
amplitude is increased, all the curves denote a decrement of dynamical integrity, espe-
cially after the heteroclinic bifurcation threshold at γ �0.094; all curves have a sort
of well visible step at about γ �0.165, which is likely related to a secondary global
bifurcation—possibly a heteroclinic connection between the hilltop and a relevant
in-well saddle—which further promotes the penetration of eroding tongues. Thus, all
the profiles are able to capture correctly the main global phenomena. Nevertheless,
very different degrees of confidence are suggested.

We focus on the classical safe basin. As far as a small dynamic excitation is
assumed, both IF and GIM basically coincide. Then, at about γ ∼�0.15, i.e., in
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correspondence of the previously mentioned secondary bifurcation, they suddenly
diverge. For the GIM this step, while present, is not so evident; on the contrary, for
the IF it is really apparent. This clearly denotes that the erosion has reduced abruptly
the compactness of the safe bounded area, dropping it to smaller values, although
not to totally vulnerable ones. The fractality still broadens for an extensive part of
the phase space (in fact the GIM remains elevated); nevertheless, we cannot count
on this fractal area, since it may be seriously dangerous.

Focusing on the “true” safe basin, instead, the reliability of the system is strongly
reduced, both for the GIM and for the IF. The erosion is observed to produce consid-
erable effects also at small dynamic excitations. In correspondence of the secondary
heteroclinic bifurcation, the GIM has already more than halved its initial value. Sim-
ilarly occurs for the IF soon after the heteroclinic event. At γ �0.20, the system
drops down to IF ∼�35% and GIM ∼�15%, i.e., both IF and GIM clearly alert that
the system is dangerously vulnerable.

Overall, when looking for phase-independent results, the classical safe basin seri-
ously underestimates the erosion, since it suggests the system tobe robust, thoughdef-
initely it is not. The differences are dramatic when the excitation amplitude increases.
The “true” safe basin, instead, appears more satisfactory for this kind of problems.

5 Dynamical Integrity: Control

The present section is devoted to investigate the benefits of the global safety approach
in control issues. This analysis enables to check the actual performances of the
assumed control technique, assessing the parameter ranges where they may be effec-
tively exhibited under realistic conditions.

In the following, a convenient control method is introduced, which was proposed
by Lenci and Rega (1998a). The intent of the considered control technique is really
challenging, since it is aimed at controlling the overall global dynamics. Initially,
we describe the main steps of the control procedure, which is based on shifting the
homo/heteroclinic bifurcation of the saddle taken into account toward higher excita-
tion amplitudes. Successively, we assess the actual effects of the control method, by
resorting to the dynamic integrity analysis. Based on the obtained profiles, the pro-
posed control technique is ascertained to effectively increase the engineering safety
of a system in terms of global dynamics.

The control method is illustrated with reference to two classical archetypal oscil-
lators, Helmholtz (Sect. 5.1) and Duffing (Sect. 5.2). An assessment of the effects of
the same control technique in the nonlinear dynamics of reducedmodels of structures
in macro- or micro-mechanics is presented in Gonçalves et al. (2018) and Settimi
and Rega (2018) of this book, respectively.
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5.1 Helmholtz Oscillator

In the case of the softening Helmholtz oscillator, special attention is focused on the
escape phenomenon, which constitutes the most dangerous aspect of the analyzed
system. Due to the importance of this event, the effectiveness of the control method
is investigated in detail and the global dynamical effects in terms of overall safety
are discussed. The method is shown to be able to shift the homoclinic bifurcation
triggering the erosion of the potential well, as per the theoretical predictions, and
also to delay its actual strong occurrence, thus preserving the integrity of the system.
For more details, we refer to Lenci and Rega (2003a, c, 2004b, c), Rega and Lenci
(2003, 2005, 2008, 2009), and Rega et al. (2010).

The homoclinic bifurcation threshold. We consider the dimensionless softening
Helmholtz equation (Lenci and Rega 2003a, 2004b; Rega and Lenci 2005)

ẍ + εδ ẋ − x + x2 � εγ (ωt) � εγ1

∞∑
j�1

γ j

γ1
sin ( jωt + � j ) (10)

where εδ is the damping coefficient and εγ (ωt) is the generic 2π /ω-periodic external
excitation given by a basic harmonic plus controlling superharmonics, which are
optimally determined by the control technique. Specifically, εγ 1 is the amplitude of
the basic harmonic, εγ j are the amplitudes of the controlling superharmonics, and
� j are the phases.

To better observe the improvements provided by the control method, we write the
excitation as reported in the right-hand side of Eq. (10), where εγ 1 represents the
overall amplitude of the excitation and γ j/γ 1 represent the superharmonic correc-
tions with respect to the basic harmonic assumed as reference. The dimensionless
parameter ε is introduced to emphasize the smallness of damping and excitation,
which indeed are considered as perturbations of the conservative case.

The potential and the unforced undamped phase portraits are depicted in Fig. 37.
The equilibrium points are x1 �0, which is the hilltop saddle, and x2 �1, which
is a center belonging to the unique potential well. There are two different classes
of oscillations, namely, bounded periodic nonlinear cycles within the potential
well and unbounded nonperiodic solutions which tend to −∞ when t →±∞.
They are separated by the unique homoclinic orbit of the hilltop saddle, xhom(t)�
(3/2)(1/cosh2(t/2)).

When perturbations (damping and forcing) are added, the stable and unstableman-
ifolds split and, for sufficiently large values of excitation amplitude, they intersect.
The first excitation giving tangencies of manifolds corresponds to the homoclinic
bifurcation. This threshold can be computed analytically via the Melnikov’s method
(Guckenheimer and Holmes 1983; Wiggins 1990).

In the present case, theMelnikov functionmeasuring the first-order (in ε) distance
between the perturbed stable and unstable manifolds is
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M(m) � −6

5
δ

[
1 +

γ1

γ h
1,cr (ω)

h(m)

]
(11)

with

h(m) �
∞∑
j�1

h jcos( jm + � j ) h j � γ j

γ1

j2sinh(ωπ )

sinh( jωπ )
(12)

where γ h
1,cr (ω) � δsinh(ωπ )/(5πω2) is the critical curve of homoclinic bifurcation

for the reference case of harmonic excitation. In (11)–(12), the argumentm is given by
m �ωt0 +φ0, where (t0, φ0) is a parametrization of the two-dimensional manifolds
(in the three-dimensional space (x ,ẋ ,t)). Note that h1 �1, that h(m) is 2π -periodic
and has zero mean value, and that the effects of superharmonic corrections in the
Melnikov function are governed by the parameters hj, j >1.

Expression (11) is schematically illustrated in Fig. 38. It shows that the distance
is made of a constant part plus an oscillating part, the first being proportional to
the damping and the second to the excitation amplitude. We note that, (i) if γ 1 and
ω are fixed, the (minimum) distance between the manifolds, which is attained at
the minimum of h(m), increases by increasing the minimum of h(m), i.e., the larger
is the minimum of h(m), the larger is the distance; (ii) for a fixed ω, the larger
is the minimum of h(m), the larger is the multiplier γ 1,cr needed to realize zero
distance, namely, the excitation amplitude for homoclinic bifurcation. Accordingly,
if we compare two givenMA(m) andMB(m) for a fixed value of ω but varying γ 1,
since the minimum of hB(m) is greater than the minimum of hA(m), the homoclinic
bifurcation threshold is larger in case B than in case A, i.e., γ B

1,cr > γ A
1,cr .

The condition M(m) �0 for some m[0, 2π ] guaranteeing the homoclinic inter-
section of the stable and unstable manifolds occurs in the region of the parameter
space defined by

(a) (b)
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Fig. 38 A schematic
diagram of the Melnikov
distance between stable and
unstable manifolds

Fig. 39 The curves γ h
1,cr (ω)

(harmonic excitation) and
γ 1,cr for M=0.5
(corresponding to the
mathematical optimal
solution), in the space of
governing parameters (ω,
γ 1)
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with

M � − min
m∈[0, 2π] {h(m)} � max

m∈[0, 2π] { − h(m)} (14)

where M is a positive number accounting for the shape of the excitation.
As can be observed in Fig. 39, in the case of generic excitation, the curve γ 1,cr(ω)

separates the zone where homoclinic intersections do not occur (below the critical
curve) from the zone where homoclinic intersections do occur (above the critical
curve). The same holds for γ h

1,cr (ω) in the case of harmonic excitation.
These curves differ by a factor 1/M. The strip above γ h

1,cr (ω), where there is homo-
clinic intersection with harmonic excitation, and below γ 1,cr(ω), where there is no
intersection with unharmonic excitation, is called saved region and represents the
zone where unharmonic excitation is theoretically effective. Its (maximum) enlarge-
ment constitutes the objective of the control method.
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Optimal control and optimization problems. The central idea of the controlmethod
is to reduce the region of homoclinic intersection by varying the shape of the exci-
tation. This entails increasing γ 1,cr as much as possible by varying the Fourier coef-
ficients hj and � j of γ (ωt). Mathematically, it can be expressed by the following
optimization problem:

Maximizing G by varying h j and Ψ j , j ≥ 2, of h(m) (15)

where G is the gain, which is defined as the ratio

G � γ1, cr

γ h
1, cr

� 1

M
(16)

thus, the smaller being M, the smaller being the upper region in the parameter space.
The (optimal) solution h(m) is a positive Dirac delta of amplitude π at m �0

plus the constant function −1/2. The Fourier coefficients are hj �1, � j �0, and the
optimal gain is G �2, i.e., the critical amplitude is doubled in principle. Unfortu-
nately, this mathematical optimal solution is not acceptable from a physical view-
point, because the corresponding excitation would be a divergent series; this is not
a pathological property of the Helmholtz oscillator but holds in general (Lenci and
Rega 2004b).

To take into account the physical admissibility of the searched optimal excitation,
some further constraint should be added to problem (15). This may be done in
different ways. In any case, due to the new constraint, the physically admissible best
gain is reduced, and the value G �2 remains as a (hypothetically optimal) value of
comparison (indeed, it is an upper bound) for the actual optimal problems. The more
the constrained optimal is close to G �2, the more the associated optimal excitation
is effective, at least from a theoretical point of view.

Among various possibilities, we consider the (optimal) solution obtained by
assuming only a finite number N of superharmonics, so that the question of the opti-
mal excitation divergence automatically disappears. Results are reported in Table 2.
Note that these reduced-order solutions are very satisfactory from a practical point of
view, since they are easy to reproduce in experiments and/or applications and, more-
over, they provide a high gain, which is quite close to the upper bound corresponding
to the physically inadmissible mathematical solution.

Delaying the erosion of the potential well. To illustrate the practical performances of
the control method, in the following, some numerical simulations are reported. They
are focused on a neighborhood of the vertex of the escape region in the excitation
parameters plane (Lenci and Rega 2003a), i.e., on the range corresponding to the
most dangerous frequencies (the ones for which the escape occurs for the lowest
value of excitation amplitude), where even small improvements are very useful.

Wecan clearly observe that the present controlmethod is able to shift the beginning
of the erosion of the potential well toward higher excitation amplitudes, Fig. 40. The
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Fig. 40 Basins of attraction at ω �0.8 and εγ 1 �1.8 εγ h
1,cr �0.02195, for different excitations:

a harmonic; b optimal excitation with one superharmonic; c optimal excitation with two superhar-
monics

basins of attraction of the nonresonant branch and of the resonant one are orange and
green, respectively; the escape is white.

As an example, we refer to the frequency ω �0.80 and the excitation amplitude
εγ 1 �1.8 εγ h

1,cr �0.02195. Since the assumed εγ 1 is above εγ h
1,cr , at harmonic

excitation fractal basin boundaries are observed, Fig. 40a. Fractal tongues of escape
penetrate the potential well separating the basins of the nonresonant and the resonant
branch. At optimal excitation with one superharmonic, fractal basin boundaries are
still visible, Fig. 40b. This is in agreement with the fact that also for this excitation we
are above the critical threshold, which is given by γ 1, cr �1.4142 γ h

1,cr . However, the
extent of the fractal region is reduced, since the fractalization of the boundaries starts
later, and the erosion is less developed, although the two basins are still separated.
At the optimal excitation with two superharmonic corrections, the fractalization has
almost disappeared, Fig. 40c. In fact, the amplitude is still above the relevant critical
value, which is now given by γ 1, cr �1.6180 γ h

1,cr , but, differently from the previous
cases, it is not so higher. Accordingly, the erosion takes place, but it involves only a

Table 2 The numerical results of various optimization problems with an increasing finite number
of superharmonics

N GN MN h2 h3 h4 h5 h6 h7

2 1.4142 0.7071 0.353553

3 1.618 0.6180 0.552756 0.170789

4 1.7321 0.5773 0.673525 0.333274 0.096175

5 1.8019 0.5550 0.751654 0.462136 0.215156 0.059632

6 1.8476 0.5412 0.807624 0.567084 0.334898 0.153043 0.042422

7 1.8794 0.5321 0.842528 0.635867 0.422667 0.237873 0.103775 0.027323

… … … … … … … … …

∞ 2 0.5 1 1 1 1 1 1
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Fig. 41 Erosion profiles of GIM versus excitation amplitude γ 1, in the case of (i) harmonic exci-
tation (red), (ii) optimal excitation with one controlling superharmonic (blue), and (iii) optimal
excitation with two controlling superharmonics (green). The vertical segments denote the numer-
ical homoclinic bifurcation. a ω �0.70, b ω �0.81, c ω �0.85, d ω �0.90. Specifically, in (a)
we have at (ii) γ 2/γ 1 �0.8068, at (iii) γ 2/γ 1 �1.2614, γ 3/γ 1 �1.5621; in (b) at (ii) γ 2/γ 1 �
1.1329, at (iii) γ 2/γ 1 �1.7713, γ 3/γ 1 �3.0988; in (c) at (ii) γ 2/γ 1 �1.2829, at (iii) γ 2/γ 1 �
2.0057, γ 3/γ 1 �3.9787; in (d) at (ii) γ 2/γ 1 �1.4992, at (iii) γ 2/γ 1 �2.3438, γ 3/γ 1 �5.4402

narrow outer part of the basin of the resonant attractor, while the central core of the
potential well remains uncorrupted.

To have a quantitative measure of the effects of the control method in reducing
the erosion of the potential well, erosion profiles at increasing excitation amplitude
are reported in Fig. 41. Since we are focusing on the potential well, we assume as
safe basin the union of the classical basins of attraction of all the bounded attractors;
we measure its dynamical integrity by the GIM, where the status in the absence of
excitation is chosen as normalizing condition. We analyze the outcome at harmonic
excitation, at optimal excitation with one controlling superharmonic, and at optimal
excitation with two controlling superharmonics. As examples, we consider the exci-
tation frequencies ω �0.70 (before the vertex of the escape region), ω �0.81 and ω

�0.85 (in a neighborhood of the vertex), and ω �0.90 (after the vertex).
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We can clearly observe that the optimal control excitations are able to delay
the homoclinic bifurcations (marked by vertical segments). This affects favorably
the erosion profiles, whose sharp fall down turns out to be meaningfully shifted
toward higher excitation amplitudes. Also, this shift is substantially independent of
the frequency, showing the robustness of the control method. Thus, up to the shifted
homoclinic bifurcations, the erosion is clearly reduced, which is beneficial to the
overall system safety.

It is worth emphasizing that the control method is effective in shifting the starting
point of the erosion (as somehow expected, if the controlled homoclinic bifurcation is
the one actually responsible for the phenomenon, as in the present case), while there
are no theoretical predictions on its ability to shift the ending point, too. Accordingly,
there is not an expected outcome both as regards the development of the erosion
profile and as regards its last part, but they may vary depending on the assumed
excitations and at different frequency values. This can be clearly observed in the
diagrams.

After the beginning of the erosion, the profiles corresponding to the controlled
excitations are generally sharper than the one corresponding to the reference har-
monic excitation—at least as regards the after-the-homoclinic bifurcation narrow
fall of the GIM—and rapidly tend to it. In some cases, there is also a shift of the
critical threshold of escape toward higher excitation amplitudes (i.e., a delay of
the inevitable failure of the structure), which goes well beyond what theoretically
expected by the proposed control method; in other cases, instead, this feature does
not occur.

Specifically, atω �0.70 in Fig. 41a, i.e., for “low” frequencies, the curves overlap
nearly at a unique point (denoted by D), after which the GIM corresponding to the
controlled excitations is lower than the one corresponding to the basic harmonic.
Thus, in this parameter range, the control is effective in the saved region, while it is
ineffective above this strip. This property holds also for ω <0.70, as shown by other,
not reported, numerical simulations.

At ω �0.81 in Fig. 41b and at ω �0.85 in Fig. 41c, i.e., in a neighborhood of
the vertex of the escape V -shaped region, the erosion curves do not overlap (apart
from a few minor exceptions). The escape in case of controlled excitations occurs
for slightly larger values of excitation amplitudes with respect to the uncontrolled
case. Nevertheless, the profile of the controlled system is very sharp and there is an
“instantaneous” fall toward the escape. While the robust increase of the beginning of
the erosion and the possible increase of the escape excitation threshold are important
practical performances of the control method, the sharpness of the profile may be
dangerous in practical applications. In fact, a small increase of excitation around the
points B and C of Fig. 41b may suddenly lead to the escape.

Atω �0.90 in Fig. 41d, i.e., for “large” frequencies, the very last part of the profile
in the case of control with one superharmonic recovers the harmonic one, while in
the case of control with two superharmonics it rapidly tends to zero (escape). This is
due to the fact that in this range the relative amplitudes γ 2/γ 1 and γ 3/γ 1 of the added
superharmonics are very large (see the caption of Fig. 41). This seems to confirm that
also for large frequencies the control is effective in the saved region, as theoretically
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expected, while it is substantially ineffective above. However, better results (in terms
of escape) can be achieved, for instance, by resorting to other optimal excitations, as
observed in Lenci and Rega (2004b).

On the basis of the previous considerations, it is possible to individuate a well-
defined erosion reduction region, which is the zone where the controlled profiles are
above the harmonic profile and which can be approximated by the strip in between
the harmonic and controlled homoclinic bifurcations in the parameters plane. In this
region, effectiveness of control is always observed. The obtained gain appears to be
considerable.

5.2 Duffing Oscillator

We consider the hardening Duffing oscillator with a two-well symmetric potential.
The presence of two simultaneous homoclinic orbits is the new aspect of the present
system. This has important consequences in terms of control. In particular, there is
the possibility to develop two different control strategies, namely, “one-side” control
and “global” control. Their effects on the global dynamics of the system are analyzed
and compared. It is highlighted that the former is able to provide high gain but control
of only a part of the phase space, and the latter low gain but control of thewhole phase
space. More details can be found in Lenci and Rega (2003b, c, 2004b, c, 2011b),
Rega and Lenci (2003, 2005, 2008, 2009), and Rega et al. (2010).

Global control versus one-side control. We consider the dimensionless hardening
Duffing equation (Lenci and Rega 2003b, 2004b; Rega and Lenci 2005)

ẍ + εδ ẋ − x

2
+

x3

2
� εγ (ωt) � εγ1

∞∑
j�1

γ j

γ1
sin ( jωt + � j ) (17)

where, as in Eq. (10), εδ is the damping coefficient, εγ (ωt) is the generic 2π /ω-
periodic external excitation given by a basic harmonic plus controlling superhar-
monics, εγ 1 is the overall amplitude, and γ j/γ 1 and � j are the excitation shape
parameters.

The associated potential and the unforced undamped phase portrait are depicted
in Fig. 42. This is a symmetric two-well potential system. The dynamics are charac-
terized by the presence of two centers (x0,2 � ∓1) and a unique hilltop saddle (x1 �
0), which has two symmetric homoclinic loops, one on the right and one on the left
of the phase space, xl,r

hom(t) � ∓√
2/ cosh(t/

√
2).

Since there are two homoclinic orbits, there are two different Melnikov’s func-
tions, which can be written in the form

Ml,r (m) � −δ
2
√
2

3

[
1 ∓ γ1

γ h
1, cr (ω)

h(m)

]
(18)
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with

h(m) �
∞∑
j�1

h j cos( jωt + Ψ j ) h j � γ j

γ1

j cosh
(

ωπ√
2

)

cosh
(

jωπ√
2

) (19)

where γ h
1,cr (ω) � δ

√
2 cosh(ωπ/

√
2)/(3πω).

The conditionMl(m) � 0 for some m[0, 2π ] guaranteeing the homoclinic inter-
section of the left stable and unstable manifolds occurs in the region of the parameter
space defined by

γ1 > γ l
1, cr (ω) � γ h

1, cr (ω)
1

Ml
with Ml � max

m∈[0, 2π] {h(m)} (20)

Similarly, the condition Mr (m) � 0 for some m[0, 2π ] guaranteeing the homo-
clinic intersection of the right stable and unstable manifolds occurs in the region of
the parameter space defined by

γ1 > γ r
1, cr (ω) � γ h

1, cr (ω)
1

Mr
with Mr � − min

m∈[0, 2π] {h(m)} (21)

Note that Ml and Mr are positive numbers accounting for the shape of the excita-
tion.

For a given generic excitation, the curves γ l
1,cr (ω) and γ r

1,cr (ω) represent the loci
of the left and right homoclinic bifurcations, respectively, Fig. 43. In general, these
two curves are distinct from each other. They coincide only for the class of excita-
tions satisfying max{h(m)}�–min{h(m)}, which occurs, for example, in the case of
harmonic excitation, where h(m)�cos(ωt +�1) and Ml �Mr �1, i.e., in the case
of harmonic excitation the curve γ h

1,cr (ω) represents the (coinciding) left and right

(a) (b) 
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Fig. 42 a The potential V (x) and b the unforced undamped phase portrait
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Fig. 43 The curves γ h
1,cr (ω)

and γ
l,r
1,cr (ω) for Gl,r �4/π

(mathematical solution of
global control) and for Gl,r

�2 (mathematical solution
of one-side control)

0.0

2.00.0 1.0 1.50.5

1.0

2.0

3.0

0.5

1.5

2.5
region with
homoclinic

intersections

saved
region

region without
homoclinic

intersections

gl
ob
al

on
e -

sid
e

1, cr
h

1, cr
r l, 

1, cr

ω

γ

γ

γ
δ

homoclinic bifurcations. Thus, the saved region is represented by the strip located
above γ h

1,cr (ω) and below γ l
1,cr (ω) and/or γ r

1,cr (ω).
Here appears the peculiarity of the present oscillator. In fact, the presence of two

homoclinic orbits permits choosing among different control strategies. Indeed, we
can control only the right (left) homoclinic bifurcation, irrespective of what happens
in the left (right) potential well, or we can try to control simultaneously the right and
the left homoclinic bifurcations.

This question is important from the application viewpoint, since the first approach
is aimed at obtaining a topologically “localized” control, whereas the second
approach is aimed at controlling, on average, the “whole” phase space. Thus, three
different cases can be investigated separately, specifically:

(ia) “One-side” control on the right well (right control). It is aimed at reducing
the region of the right homoclinic intersection by varying the shape of the
excitation, which mathematically requires solving the optimization problem

Maximizing Gr by varying h j and Ψ j , j ≥ 2, of h(m) (22)

(ib) “One-side” control on the left well (left control). It is aimed at reducing the
region of the left homoclinic intersection by varying the shape of the excitation,
which mathematically requires solving the optimization problem

Maximizing Gl by varying h j and Ψ j , j ≥ 2, of h(m) (23)

(ii) “Global” control. It is aimed at controlling simultaneously the right and the left
homoclinic intersections, i.e., it is based on the simultaneous increasing of the
two critical thresholds for homoclinic bifurcations. Since

γ l
1,cr � γ r

1,cr ⇔ Gl � Gr ⇔ max{h(m)} � −min{h(m)} (24)

this entails solving
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Maximizing G � (
Gl � Gr

)
by varying h j and Ψ j , j ≥ 2, of h(m),

under the constraint−min{h(m)} � max{h(m)} (25)

Note that in (ia), (ib), and (ii), Gl and Gr are the gains

Gl � γ l
1, cr (ω)

γ h
1, cr (ω)

� 1

Ml
Gr � γ r

1, cr (ω)

γ h
1, cr (ω)

� 1

Mr
(26)

Thus, the “one-side” control considers only one homoclinic bifurcation, i.e., in
this case we are able to control only one part of the phase space, while having to
accept a possible worsening on the other part. Conversely, the global control permits
controlling the entire phase space. Yet, the optimal gain in the global control is lesser
than in the one-side controls, i.e., the global control is theoretically less performant (in
fact, problem (25) is clearly a constrained version of (22)–(23)). These considerations
show that the two approaches are complementary and not competing.

Similarly to theHelmholtz system, also in the present case study, themathematical
solutions are physically inadmissible because the corresponding excitations would
be divergent. To overcome this drawback, in the following, we consider (optimal)
reduced-order solutions obtained with a finite number N of superharmonics. Results
are reported in Table 3, both for the right (or left) one-side control and for the global
control. Note that both solutions provide gains which are quite close to the upper
bounds, respectively, 2 and 4/π , which correspond to the physically inadmissible
mathematical solutions.

Control of the whole phase space versus control of a single potential well. In the
following, we compare the different behaviors of global and one-side controls at ω

�0.80, i.e., in the neighborhood of the vertex (most dangerous frequencies) of the
V -shaped region of cross-well chaos (where the erosion ends up) in the excitation
parameters plane (Szemplińska-Stupnicka and Rudowski 1993). Their effects on the
attractor-basins phase portraits are analyzed in Fig. 44, where the cases of harmonic
excitation, of global optimal excitationwith one superharmonic, and of right one-side
optimal excitation with one superharmonic are reported. The basins are, respectively,
light pink and pink for the nonresonant and the resonant attractor in the left well, and
light blue and blue for the ones in the right well.

As an example, we refer to εγ 1 �0.0650. Overall, we can note that the regular-
ization of fractal basin boundaries is an important result, which is expected both in
the global and in the one-side control. It is worth highlighting that only fractality
between different wells can be eliminated by controlling the homoclinic bifurcation
of the hilltop saddle, while the in-well fractality between coexisting confined attrac-
tors (e.g., resonant and nonresonant oscillations) is likely due to other homoclinic
bifurcations; thus, it is not addressed in the present case study, though being also
somehow favorably affected by the applied controls [in any case, it can be purposely
controlled by the same method applied to the involved—non-hilltop—saddle (Lenci
and Rega 2003c)].
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Fig. 44 Basins of attractions at εγ 1 �0.065 andω �0.80, for a harmonic excitation, b global opti-
mal excitation with one superharmonic, c right one-side optimal excitation with one superharmonic.
Examples of the circles used in the evaluation of the IF are reported

The considered excitation amplitude is larger than εγ h
1,cr (ω)�0.0570, and accord-

ingly under harmonic excitation we observe fractal basin boundaries between the
right and left attractors, Fig. 44a. The (left-light pink and pink/right-light blue and
blue) fractality is modest, due to closeness of the considered excitation to the homo-
clinic bifurcation threshold, and the behavior is “symmetric” according to the nature
of the excitation.

The “symmetry” is maintained by the global control in Fig. 44b, which indeed
entails no fractal basin boundaries, according to the fact that the homoclinic bifurca-
tion for this excitation occurs for a (slightly) larger value of the amplitude (εγ 1,cr| N = 3

�0.0659). In the case of (right) one-side control, the “symmetry” is lost, Fig. 44c. In
fact, for εγ 1 �0.065, we have homoclinic intersection of the left manifolds (being
εγ l

1,cr �0.0421) and no intersection of the right manifolds (being εγ r
1,cr �0.0807).

Thus, we observe (left-light pink/right-light blue and blue) fractal basins of attraction
on the left and regular basins on the right. Furthermore, the (left-light pink/right-light
blue and blue) fractality is rather extended on the left due to the considerable distance
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Fig. 45 The basins erosion
curves at ω �0.80 and a
harmonic excitation, b global
optimal excitation with one
superharmonic, c right
one-side optimal excitation
with one superharmonic
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of the excitation value from the left homoclinic bifurcation threshold in parameter
space.

Hence, the global control permits a limited reduction of cross-well fractality
(related to the low theoretical gain) on the whole phase space, while the one-side
control gives a strong reduction of fractality in the controlled potential well (related
to the high theoretical gain), but extended fractality in the uncontrolled well, namely,
a localized control in the phase space. A different extension of the fractal zones with
harmonic and one-side optimal excitations is due to the different distances from the
relevant homoclinic bifurcations triggering the fractalization.

The erosion profiles corresponding to harmonic, “one-side” and “global” controls
with a single controlling superharmonic are reported in Fig. 45. As an example, we
considerω �0.80. The safe basin is assumed as the union of the basins of attraction of
all the attractors belonging to a certain (left or right) potential well, and the dynamical
integrity is measured by the Integrity Factor (IF).

In the case of global control, the global optimal excitation (curve (b)) is able
to shift toward larger amplitudes the erosion curve with respect to the harmonic
excitation (curve (a)), namely, it is effective in reducing the erosion. The controlled
excitation profile is sharper than the one of the reference excitation, and after the fall
the IF is smaller. This agrees with similar characteristics observed in Sect. 5.1 for
the case of the Helmholtz oscillator and proves that there is a well-defined interval
(approximately, the vertical segments in between curves (a) and (b))where the control
is effective.

The case of (right) one-side control has different properties. In fact, due to the
asymmetry of this excitation, the left and right wells have a different behavior.
According to the theoretical predictions, the erosion curve (c)l of the left uncontrolled
potential well is much lower than curve (a), namely, there is a strong fractalization
in the uncontrolled (left) potential well and even a strong reduction of the extent of
the basin of the left attractor(s). In the right-controlled potential well, on the other
hand, basically there is no erosion at all (curve (c)r), in very good agreement with
the theoretical predictions.
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The one-side erosion curves end at εγ 1
∼�0.066, where the last attractor belong-

ing to the left potential well disappears by a saddle-node bifurcation. For εγ 1

>0.066—and up to εγ 1 <0.0951, where a cross-well chaotic attractor is established
(Lenci and Rega 2003b)—there are only confined attractors in the controlled poten-
tial well, so that the question of cross-well fractalization of the basins makes no more
sense. Note that the curve (c)r does not fall down. This agrees with the fact that the
right homoclinic bifurcation occurs at εγ r

1,cr �0.0807, a value well above the point
where the curve disappears.

6 Dynamical Integrity: Design

After highlighting the relevance of the global safety for analyzing the nonlinear phe-
nomena arising in a system and for controlling them, in the present section we dwell
on its potential for getting hints in the design stage. We compare the conventional
approach traditionally used in the literature and based on large safety factors, with
the novel global safety approach based on dynamical integrity results.

6.1 Conventional Approach Versus Dynamical Integrity
Approach

As extensively remarked along the chapter, because of the unavoidable presence
of real-world disturbances, there is a discrepancy between the theoretical range
of existence of the desired solution predicted by the local stability theory and the
practical range of existence actually observable under realistic conditions, being
the latter a subset of the former. This discrepancy is regularly experienced and the
ensuing reduction of the operational range may be considerable.

An example is shown in Fig. 46, which illustrates a schematic (but very close
to real) of the dynamics in a neighborhood of the resonance frequency, in the case
of a softening-type behavior. The two-parameter safety chart is reported, as the
excitation amplitude and the excitation frequency are varied. The backbone detects
the resonance frequency, with the characteristic softening bending. The stability
bifurcation threshold representing the bifurcation points is symbolically sketched.
This is the boundary of the “stability region” (grayscale), beyond which there is
the inevitable escape (white). In a neighborhood of the resonance frequency, the
characteristic incursive vertex occurs, which denotes a fall in the stability region.
Since this area is very sensitive, it needs to be carefully taken into account in the
design. Overall, when ramping up the excitation amplitude, the chart highlights that
the stability region becomes increasingly varied, rich, and complex especially in a
neighborhood of the resonance, where the practical region is generally reduced more
than the theoretical one.
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Fig. 46 Schematic safety
chart for a system subjected
to a harmonic excitation
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To guarantee safe conditions in this scenario, the conventional approach regularly
assumed by the technical community consists of relying only on the part of the
parameter space where the nonlinear phenomena are not experienced. In fact, these
phenomena generally require an advanced analysis and, if not properly investigated,
they may have dramatically dangerous effects. The conventional approach is firmly
intended to prevent them from scratch. The system, instead, is designed to operate
only in the linear (or very close to linear) regime,which is the sole one to be considered
as fully reliable. This is achieved by establishing large safety factors in the design
stage, which are able to set a very cautious distance far from the nonlinear features,
i.e., a safe threshold which has not to be overcome.

In Fig. 46, we report a typical safe region detected via the large safety factors (dark
gray). The theoretical bounded dynamics occur also for elevated values of excitation
amplitude; the dynamics allowed by the large safety factors, instead, stand well
below. This enables to avoid the incursive vertex due to the resonance. This threshold
is generally constant as the parameters are varied, i.e., it is not raised up when the
system is kept in the safer regions spanning away from resonance.

As evinced by the example, the conventional approach is very simple. Bymeans of
large safety factors, a safe boundary is detected, which is deliberately very low; this
enables the system to be certainly in safe conditions. Yet, a very low safe boundary
means restricting the operational life of the system to a narrow parameter range; all
the dynamics developing beyond it are intentionally overlooked, generally they are
not even investigated. Thus, the conventional approach is safe, but very conservative.

This is the reason why it may be not fully satisfactory. In fact, the system is
reliable in practice well above the area allowed by the large safety factors, as proven
by experiments in various different fields (Lenci et al. 2013). Here, the dynamics
exceed the linear regime, increase their complexity, and need a deeper investigation;
nevertheless, they are non-necessarily dangerous. They may be safely operated in
practice in a wider region of the parameters space, although smaller than the one of
theoretical stability. If we overlook this aspect, we lose large part of the potential



www.manaraa.com

Dynamical Integrity: A Novel Paradigm for Evaluating … 103

of the system. In fact, as emphasized in various circumstances (Wiercigroch and
Pavlovskaia 2008; Wiercigroch and Rega 2013), there is a growing need to take
advantage of the variety of nonlinear features to design and fabricate systems with
superior performances and higher safety characteristics. Hence, the conventional
approach is too restrictive for an ambitious engineering design.

This technically driven weakness is well known in the scientific literature. Various
attempts have been made, and different thresholds have been suggested to widen the
system operational range, while keeping safe conditions. We recall the Melnikov
curve (Guckenheimer and Holmes 1983; Wiggins 1990), which is developed in the
framework of the perturbation technique and detects the homo/heteroclinic bifurca-
tion of the hilltop saddle. Resorting to this curve allows raising the safe boundary,
but only slightly; also, this curve is not able to perceive the occurrence of some
important features, e.g., the resonance phenomenon. Another curve referred in the
literature is based on the Moon–Chirikov overlap criterion (Moon 1980), but even
this curve remains rather low. For an overview, we refer to Moon (1987, 1992) and
Szemplińska-Stupnicka (1995).

In this context, the introduction of the global safety concept paves the way for a
novel approach to detect a safe threshold for the engineering design, such to be both
reliable and able to valorize the full potential of the system.

In Fig. 46, we consider an admissible level of perturbations representing the mag-
nitude of the disturbances expected in the structure, i.e., we consider an acceptable
residual dynamical integrity (DI safe threshold). Below the selected iso-integrity
curve, there is the region of the parameters space which can be safely allowed in the
design. It includes the area detected by the conventional approach (dark gray) and
broadens further (gray), which clearly states that large part of the complex nonlinear
behavior can be consciously and safely operated. Above this whole range, the solu-
tion theoretically continues to exist up to its stability boundary, but is no more able
to support the expected disturbances, thus being unsafe from a practical viewpoint
(light gray). Further above, the escape is inevitable (white).

We emphasize the accuracy of the iso-integrity curve to face with the dynamics in
a neighborhood of the resonance frequency; it permits no longer excluding them and
thoroughly delineates the largest range where they can be safely taken into account
in the design. Note that Fig. 46 is only a schematic; for an impressive real case study,
we refer to Ruzziconi et al. (2018) in this book.

The example clearly shows the dynamical integrity approach. The designer is
called to fix the minimum value of dynamical integrity which can be assumed as
acceptable when varying a control parameter, i.e., the maximum allowed change of
initial conditions which can be safely supported by the system with respect to the
desired solution. In traditional terms, this corresponds to fixing a kind of safety factor
with respect to the unwanted (static or dynamical) event, under given values of the
other control parameters; but the context is now totally different with respect to the
conventional approach, since it is based on the clear identification, comprehensive
knowledge, and controllability of the elements governing the system behavior. This
allows widening the range of applicability of the system and fully exploiting the
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whole safe region in parameters space, i.e., the dynamical integrity approach is safe
but not too conservative.

Furthermore, the dynamic integrity chart reports a multiplicity of iso-integrity
curves, each one corresponding to a different level of dynamic integrity (not shown
in the figure). This enables to understand how the range of practical existence is
increased or reduced by decreasing or increasing perturbations (and vice versa). In
this sense, worthy information can be obtained about a variety of possible scenarios
ensuing from consideration of different disturbances, thus going ahead with respect
to the specific case study analyzed.

Thus, dynamical integrity is able to offer a very deep insight of the expected
behavior of a system, which allows establishing a novel paradigm for a safe and
aware engineering design.

6.2 Safe and Aware Engineering Design

As evinced in the recent literature, there is an increased interest of the research com-
munity toward exploiting nonlinear and global dynamics modeling and analysis for
designing and controlling engineering systems. Of course, passing from simplemod-
els to actual engineered systems is quite involved. Yet, a novel design philosophy
should stand in investigating conditions that optimize the behavior of naturally non-
linear systems in such a way to possibly generate favorable operation. Nonlinearities
may arise as inherent characteristics of the system or may be artificially created.
Properly taking them into account should radically influence current design, control,
and exploitation paradigms of technological systems, within amagnitude of contexts.
In this respect, global safety offers a valuable advancement.

Note that the dynamical integrity also allows performing the system reliability
analysis without, or with a limited use of, stochastic arguments, see Gonçalves et al.
(2018) in this book. These are only needed to determine the average amplitude of
the expected perturbations (due to various environmental sources), which represent
the admissible ones to be considered in the dynamical integrity approach to safety.
It could be said that dynamical integrity is a way of dealing with imperfections in
a substantially deterministic framework, owing to the increased level of knowledge
and understanding of system behavior that it provides. These are challenging and
unconventional aspects, which may be expected to influence the risk assessment
and to meaningfully affect the awareness of practitioners of mechanics about the
importance of a global analysis for an improved and modern use of systems and
structures in engineering.

In a longer term perspective, this is expected to meaningfully pave the way to the
possible introduction of technical recommendations fully accounting for, and possi-
bly exploiting, the nonlinear and global behavior of systems within a new generation
of standards and code regulations.

Widening the range of applicability and reliability of engineering dynamical sys-
tems entails an improved and aware use of existing structures/devices in larger ranges
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of parameters, as well as the design of new structures/devices, with the expected
technological improvements ranging from the increase of performance or the cost
reduction of existing systems up to the conception and development of novel systems.

7 Summary and Conclusions

In the present chapter, we have overviewed some recent advancements attained in the
study of nonlinear dynamics. These achievements offer to the research community
the possibility to raise the level of the knowledge on the system’s behavior, with
desirable advantages for the engineering design. After recalling some outstanding
historical contributions to theoretical stability, we have focused on the role played
by the global safety concept. The basic underlying idea has been presented. We
have emphasized the need of analyzing the system’s safety not only via the local
perspective traditionally assumed but also from a global viewpoint.

Based on dynamical integrity results, a novel criterion can be established for eval-
uating the load carrying capacity of a system, which allows defining reliable but not
too conservative lower bounds of safety to be referred in the design stage. In these
regards, the main steps for assessing the dynamical integrity have been illustrated.
Various definitions of safe basin and various alternative dynamical integritymeasures
have been considered and compared with each other. Dynamical integrity profiles
have been introduced. We have shown that the multiplicity of different aspects com-
monly arising in systems calls for combining the achievements coming fromdifferent
dynamical integrity tools. We have recalled a number of recurrent critical features
leading to a dynamical integrity reduction. Among them, special attention has been
drawn to the erosion of the potential well, which is particularly dangerous in systems
of the softening type.

Analysis, control, and design of systems are strongly influenced by the introduc-
tion of the global safety approach. Results coming from different case studies have
been reported, selecting them in such a way to cover the main mechanical and/or
dynamical features typically arising in engineering.

Regarding the analysis, a pendulum parametrically excited has been explored
from different dynamical integrity perspectives, which are needed to jointly concur
for a deep insight. The nonclassical problem of a rigid block has been considered.
It presents some characteristics commonly not encountered in classical systems,
highlighting that the dynamical integrity definitions typically assumed are not com-
pletely satisfactory to face its inherent peculiarities; thus, we have discussed the need
of introducing ad hoc definitions, which are capable to properly reflect the special
nature of the system.

The problem of control has been addressed. Dealing with the homo/heteroclinic
bifurcation of the hilltop saddle triggering the erosion of the potential well, a rele-
vant control technique has been assumed, which is based on shifting the bifurcation
threshold toward higher excitation amplitudes. The aim is that of controlling globally
the overall system’s dynamics. Making reference to both the Helmholtz oscillator
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and the Duffing one, we have probed the potentialities of the control method and
focused on the importance of the global safety investigation to assess and confirm
its effectiveness under realistic conditions.

The valuable contribution of the dynamical integrity in the design stage of a sys-
tem has been highlighted. We have compared the conventional approach to system
safety with the novel dynamical integrity one. The former completely overlooks the
dynamics behind the problem and does not provide the designer with a capability to
cleverly overcome it and go beyond the practical barrier. In contrast, the latter allows
the designer to understand and govern the whole matter, giving hints toward a com-
pletely different, knowledge-based, criterion for system design, with the beneficial
consequence of taking advantage of the system resources in a much more effective
way.

Concluding, in the present chapter, we have emphasized the novelty of the global
safety perspective. Although many issues remain open, this basic idea is decisive for
a higher comprehensive understanding of the system. Impressive is its potential for
increasing the practical usability of systems via a safe and aware engineering design.
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Abstract The present chapter highlights the importance of the dynamical integrity
theory for micro and nanoapplications. Three case-studies of devices at different
scales are presented (a capacitive accelerometer, a microbeam-based micro-electro-
mechanical system, and a single-walled slacked carbonnanotube) and different issues
commonly addressed in the engineering design are examined via dynamical integrity
concepts. The iso-integrity curves are observed to follow exactly the experimental
data. They are able to detect the parameter range where each attractor can be reli-
ably observed in practice and where, instead, becomes vulnerable. Also, they may be
used to simulate and predict the expected dynamics under different (smaller or larger)
experimental disturbances. While referring to particular case-studies, we show the
relevance of the dynamical integrity analysis for the engineering design of a mechan-
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1 Introduction

Micro-electromechanical systems (MEMS) are currently actively applied in a wide
spectrum of engineering fields, ranging from industrial, domestic, and commercial
uses up to energy harvesting, communications, and bioengineering.MEMSare inher-
ently nonlinear and multiphysical. Many studies investigate mechanical and dynam-
ical aspects to design, optimize, and invent devices with distinctive features, unique
characteristics, and superior performances. Multistability, jumps, chaotic motions,
snap-through, escapes, and many other complex nonlinear features arising in the
devices responses have been reported. New sophisticated devices deliberately oper-
ating in the nonlinear regime are emerging in a variety of different applications
(Younis 2011; Senturia 2001).

Several nonlinear phenomena may arise in MEMS. Focusing on electrically actu-
ated microbeams, Younis and Nayfeh (2003) investigated the effect of the design
parameters on the dynamic response. Nonlinearities may lead to either softening
or hardening behavior, depending on the dominance of the electric excitation, the
mid-plane stretching, and the axial load. Nayfeh et al. (2007) analyzed the pull-in
instability, showing similarities and differences between the static and the dynamic
pull-in phenomenon. Distinct mechanisms leading to dynamic pull-in have been
observed and the possibility to take advantage of it in the design of radio frequency
MEMS (RF-MEMS) switches to lower the high driving voltage requirement has been
explored. Abdel-Rahman et al. (2002) discussed the effects of the design parameters
for tuning the device and widening the operational range of DC polarization. Nayfeh
and Younis (2005) examined the dynamics under secondary resonance excitations.
At subharmonic resonance, the frequency response is characterized by a sharp roll-
off from pass-band to stop-band, both at hardening and softening behavior. This is
promising for designing high-sensitive band-pass RF filters of improved character-
istics.

Special attention has been devoted to the problem formulation, with the aim of
balancing the need of enough fidelity in the model against the need of numerical
efficiency for its practical use (Younis et al. 2003; Nayfeh et al. 2005; Rega and
Troger 2005; Ruzziconi et al. 2012; Belardinelli et al. 2014).

Extensive experimental tests have been performed. Alsaleem et al. (2009)
experimentally investigated nonlinear dynamic phenomena in a MEMS capacitive
accelerometer, which are induced by exciting the microstructure with a nonlinear
forcing composed of a DC electrostatic load superimposed on an AC harmonic one,
rising up to large excitations. Many experimentally measured frequency-response
curves have been reported, showing the primary resonance, the activation of vari-
ous superharmonic and subharmonic resonances, the softening-spring behavior with
bending toward lower frequency values, the pull-in instability, etc. Alsaleem et al.
(2010) further developed the experimental investigation focusing on the pull-in
bands. Several experimental data have been presented, illustrating regimes of AC
forcing amplitude versus AC frequency, where a resonator is forced to pull-in. The
effect of varying the electrostatic excitation has been examined. Different MEMS
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devices have been tested. Data are shown both for primary and for secondary reso-
nance. Younis and Alsaleem (2009) presented an exploratory research on the possi-
bility to make use of the escape and the jump phenomena to realize new concepts for
mass sensing and detection and design novel devices of improved characteristics.

Many nonlinear features may arise. Exploring a particular MEMS oscillator,
Rhoads et al. (2006a) investigated a device under pure parametric electrostatic excita-
tion. The frequency-dynamic voltage behavior chart underlines the complexity of the
dynamics, exhibiting Arnold tongues and saddle-node bifurcations and confirming
a strong correlation with the experimental data. In parametrically excited resonant
microbeam systems (Rhoads et al. 2006b), a multiplicity of topologically different
dynamical behaviors has been noticed. The tunable nature of the system’s response
has been highlighted. Sample design charts for predicting transitions between quali-
tatively distinct parameter regions have been developed. This inherent flexibilitymay
contribute to a general improvement in sensitivity, stop-band attenuation, and noise
rejection. Similar highly nonlinear dynamics have been analyzed in electromagnet-
ically actuated microbeams (Rhoads et al. 2013). In a MEMS resonator, Mestrom
et al. (2008) theoretically and experimentally investigated the softening bending and
related jumps between non-resonant and resonant branches. In a neighborhood of the
fundamental resonance, the cyclic fold bifurcations have been experimentally mea-
sured and reported in the frequency-dynamic voltage behavior chart. In a clamped—
clamped microbeam-based MEMS resonator (Mestrom et al. 2010), both soften-
ing and hardening behaviors have been experimentally and theoretically detected,
depending on the excitation parameters. An extensive analysis has been developed,
which enabled parameter study and design optimization ofmicrosystemswith respect
to nonlinear dynamic features.

The possibility of devices with bistable behavior has deeply fascinated theMEMS
and NEMS research community. Krylov et al. (2008) investigated shallow-arched
microbeams electrically actuated. They are fabricated from silicon on insulator (SOI)
wafer using deep reactive ion etching and in-plane responses are characterized by
means of optical and scanning electron microscopy. Many experimental data and
theoretical simulations have been developed, highlighting that the microstructure
may exhibit numerous nonlinear phenomena, as sequential snap-through buckling
and pull-in instability. Krylov and Dick (2010) further theoretically examined these
features, detecting the boundaries of the bistability region and shedding light on the
role of generic nonlinearities as well as on the influence of the device parameters.
As demonstrated through a series of simulations (Krylov et al. 2011), bistability
may occur also when actuated by fringing electrostatic fields. Medina et al. (2012)
extensively examined the buckling problem of initially curved bell-shaped stress-
free microbeams under a distributed electrostatic force. Symmetric and asymmetric
snap-through, release and pull-in bifurcation points are compared, exploring the
influence of the design parameters on the stability of the device. The phenomenon of
symmetry breaking has been analyzed in depth and non-symmetric buckling criteria
have been established. Significant results are reported byMedina et al. (2014), where
experimental bifurcation maps built in terms of the critical snap-through, release and
pull-in deflections of the microbeams have been developed, showing the location of
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the critical points and confirming experimentally the complex nonlinear behavior
theoretically predicted. Furthermore, bistable behavior is feasible to be operated in
curved microplates of realistic dimensions, under attainable voltages (Medina et al.
2016).

Along the same line, Ruzziconi et al. (2013b) theoretically investigated the non-
linear dynamics of an imperfect microbeam-based MEMS device with axial load
deliberately added in order to have a bistable static configuration. Several competing
attractors exist, including both in-well and cross-well oscillations, which may lead to
a considerable versatility of behavior. The vulnerability of each attractor under realis-
tic conditions has been discussed. Ramini et al. (2016a, c) experimentally examined
the rich complex dynamics arising in an in-plane silicon micromachined arch. When
the excitation is close to the first resonance frequency, a softening-spring behavior
has been noticed. Conversely, when the excitation is close to the third (second sym-
metric) resonance frequency, a hardening spring behavior arises.Moreover, at the pri-
mary resonance with high voltage excitations, dynamic snap-through motion occurs,
which exhibits hardening behavior. The snap-through frequency band is increased
when increasing the voltage load. Hajjaj et al. (2017) experimentally tuned the reso-
nance frequencies and their ratios via electrothermal modulation. An electrothermal
voltage has been applied between the anchors of an arched microbeam generating a
current that controls the axial stress caused by thermal expansion. The sensitivity of
the frequency values to the variation of the electrothermal load has been explored,
promoting the arches as wide-range tunable resonators. Ramini et al. (2016b) further
developed this experimental investigation, showing that several modal interactions
among the vibration modes can be activated. Between the first and third bending
modes of vibrations, 2:1 internal resonance, 3:1 internal resonance, and mode veer-
ing (near crossing) have been observed, which may enhance the MEMS design with
higher sensitive and less noisy responses.

As highlighted by Sumali et al. (2008), NEMS, natural “extension” of MEMS,
is drawing increasing interest in the research community for their complex nonlin-
ear features. Sazonova et al. (2004) and Üstünel et al. (2005) experimentally tested
slacked clamped–clamped CNT to a DC and AC load and characterized their free
vibration response. They underlined that the frequencies of vibration are extremely
sensitive to the level of slack. Motivated by these experimental data, Ouakad and
Younis (2012) theoretically investigated slacked carbon nanotubes electrically actu-
ated. Mode crossing and mode veering are experienced. Along the veering line, the
shape of the first mode is transferred into the different odd modes, from the lower
to the higher modes, depending on the level of slack. Odd frequencies intersect
the even ones, offering many possibilities of internal resonances and exchange of
energy among higher and lower order modes. Ouakad and Younis (2011) proved
the level of slack to significantly influence stability, natural frequencies, and pull-in
voltages of the carbon nanotube. Slack makes the softening effect in the dynamics
dominate any hardening effect from mid-plane stretching making the possibility of
hardening-type resonance of slacked CNTs very hard. Cho et al. (2010) fabricated a
nanomechanical resonator based on a doubly clamped carbon nanotube incorporating
intrinsically geometric nonlinearity. They operated the device in a highly nonlinear
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regime. Extreme broadband resonance has been observed. Both tunability over a
broad frequency range and enhanced sensitivity to external perturbations have been
explored.

Moreover, Ouakad and Younis (2010) and Younis et al. (2010) simulated the
dynamic behavior of MEMS arched resonators actuated electrically, emphasizing
the potential of making use of them as band-pass filters and low-powered switches.
Das and Batra (2009a, b) investigated sequential snap-through buckling and pull-
in, detecting critical parameter values to delineate different regions of instability.
Kacem and Hentz (2009) and Kacem et al. (2011) theoretically and experimen-
tally analyzed the nonlinear dynamics of MEMS in order to enhance the perfor-
mance of resonant sensors. In a close-loop electrostatic MEMS resonator, Seleim
et al. (2012) discovered steady-state chaotic attractors and detected regions of large
dynamic amplification, where the resonator can be used as an efficient long-stroke
actuator. In a microaccelerometer, Tusset et al. (2012) found a chaotic response and
applied control strategies, which proved effective in controlling the trajectory of the
system and robust in presence of parametric errors. Cho et al. (2012) designed a non-
linear micromechanical cantilever system with intentionally integrated geometric
nonlinearity realized through a nanotube coupling. In a system of microcantilevers
connected by a geometrically nonlinear tunable nanomembrane, Jeong et al. (2014)
explored the rich nonlinear dynamics, including the coexistence of softening and
hardening behavior. Taking advantage of the complex multistability possibly arising
in micro- and nano-electromechanical systems, Nguyen et al. (2015) presented an
alternative mass-sensing technique and proposed strategies for detection, quantifica-
tion, and localization of an added mass.

Nonlinear dynamics in MEMS and NEMS have been deeply analyzed also from
a physical point of view. In microcantilevers, Venstra et al. (2010) demonstrated
mechanical stiffening of the frequency response at large amplitudes, showing the
bistable regime as a function of the drive frequency and amplitude. Focusing on inter-
modal coupling between the flexural vibration modes, Westra et al. (2010) illustrated
theoretical and experimental diagrams of frequency–frequency response, where for
example the amplitude of the nonlinear first mode is plotted versus the driving fre-
quencies of the first and third mode. Castellanos-Gomez et al. (2012) explored the
nonlinear interaction between two different eigenmodes in freely suspended carbon
nanotube resonators. They may undergo mode softening and mode stiffening behav-
ior. In a nanowired-based mechanical resonator, Kozinsky et al. (2007) systemati-
cally probed experimental and theoretical attractor–basins phase portraits. Despite
an excellent matching, the separatrix defining the boundary of the basins is smooth
in the theoretical simulations while blurred in the experiment, which is likely due to
environmental noise affecting the system. In two elastically coupled nanomechanical
resonators driven independently near their resonance frequencies, Karabalin et al.
(2009) showed intricate nonlinear dynamics, including period-doubling transitions
and chaos. Villanueva et al. (2013) experimentally measured the nonlinear response
of nanomechanical cantilevers. In a micromechanical oscillator, Zhang et al. (2002)
described a wide range of qualitatively varying frequency responses, which can be
tuned to function like a low-pass, high-pass or band-pass filter. In an electrome-
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chanical resonator, Mahboob et al. (2016) investigated Hopf and period-doubling
bifurcations. An extensive overview on ongoing developments in the application of
nonlinear dynamic features inMEMS and NEMS devices is reported in Rhoads et al.
(2010).

The present chapter is motivated by the increasing attention toward the nonlin-
ear phenomena arising in MEMS/NEMS. Three different case-studies are presented,
with focus on the experimental investigation and its interpretation. Our aim is that
of capturing the overall scenario of the systems’ complex experimental behavior,
which is essential for proper design, performance analysis, and calibration. System-
atic numerical simulations are developed along the guidelines of classical seminal
works, as for instance Rega et al. (1995), Rega and Salvatori (1996), Szemplińska-
Stupnicka (1992), Szemplińska-Stupnicka andTyrkiel (1997), Nayfeh andBalachan-
dran (1995), etc.

As observed in the pioneering studies of Thompson (1989), the theoretical exis-
tence, and stability (in the classical sense) of a certain behavior does not guarantee
that we can actually observe it under realistic conditions, i.e., does not mean “safety”
from a practical viewpoint. This is because in experiments and practice disturbances
exist and are unavoidable. They give uncertainties to the operating initial conditions.
If the system is not sufficiently “robust” to tolerate them, the actual response may
be completely different from what theoretically predicted. Here comes the need of
the dynamical integrity analysis. We refer to Rega and Lenci (2005, 2015), to Lenci
and Rega (2011b, c), and to other chapters of this book, for an extensive discussion
of this topic.

This basic idea has been extensively developed through a series of papers, where
dynamical integrity concepts have been investigated in depth, as the issue of a reliable
dynamical integrity measure (Soliman and Thompson 1989; Lenci and Rega 2003;
Lenci et al. 2013) and the definition of safe basins (Lansbury et al. 1992). The
dynamical integrity analysis has been performed in many different fields, as for
instance ships to analyze their stability against capsizing (Thompson et al. 1990),
archetypal nonlinear oscillators (Rega and Lenci 2008), Augusti’s model (Orlando
et al. 2011), and parametrically excited cylindrical shells (Gonçalves et al. 2011).
Dynamical integrity has been considered to design a controller aimed at controlling
the system’s behavior from a global viewpoint. This control technique is based on
shifting the homoclinic bifurcation toward higher excitation amplitudes and has been
implemented inmanydifferentmechanical systems (Lenci andRega 2004), including
MEMS (Lenci and Rega 2006). Dynamical integrity has been applied for analyzing
the experimental behavior, e.g., the experimental rotating oscillations in a pendulum
parametrically excited by wave motion (Lenci and Rega 2011a).

The dynamical integrity analysis has beenwidely used in atomic forcemicroscopy
(AFM). As proved inHornstein andGottlieb (2008), complex nonlinear featuresmay
arise in AFM. The global dynamical behavior has been deeply investigated and the
theoretical bounds of inevitable escape limiting the noncontacting mode of opera-
tion have been detected. Via the Melnikov’s perturbation theory, they analytically
approximated the homoclinic bifurcation triggering the erosion of the potential well.
However, they indicated the possibility of safe bounded dynamics well above this



www.manaraa.com

Interpreting and Predicting Experimental … 119

threshold. Starting from these results, Rega and Settimi (2013) further improved the
analysis with the aim of detecting the parameter ranges where attractors may actu-
ally lose their robustness under realistic conditions, i.e., of detecting the practical
escape region. In this context, extensive dynamical integrity simulations have been
developed and many erosion profiles have been performed, in order to ensure tar-
gets of acceptable safety, according to the required performances. To keep the AFM
response within an operational regime, Settimi et al. (2015) and Settimi and Rega
(2016b, c) examined the possibility of inserting a control system. Integrity charts
providing curves with constant residual integrity have been presented and compared
with the results obtained for the uncontrolled system. This allows evaluating the
effectiveness of the control technique on the overall dynamical behavior in practical
applications and realizing of the possible criticalities that may emerge. Moreover,
taking into account the results of dynamical integrity simulations, Settimi and Rega
(2016a) applied a global control technique, which has been formulated under the
frame of the global control method proposed by Lenci and Rega (2004). This is
aimed at achieving an enlargement of the system’s safe region in the parameters
space and delaying the drop down of the erosion profile, offering a considerable
increment of the overall robustness of the AFM system during operating conditions.

Similarly to the atomic force microscopy, MEMS and NEMS have been largely
subjected to dynamical integrity investigations. The present study surveys recent
findings in the field (Ruzziconi et al. 2013a–f; Xu et al. 2017). Extensive dynami-
cal integrity analyses are performed for different devices and their relevance in the
engineering design is emphasized.

The chapter is organized as follows. Three different case-studies of devices at the
micro- and nanoscales are presented, which are respectively focused on a capacitive
accelerometer in Sect. 2, a microbeam-based MEMS device in Sect. 3, and a slacked
carbon nanotube in Sect. 4. Their complex dynamics are deeply investigated. We
dwell on the dynamical integrity charts, since they are valuable to achieve a com-
prehensive understanding of the actual behavior of a mechanical system, in view
of its safe operation in practice. Though we refer to specific devices, the very gen-
eral character of the global safety analysis is highlighted. The main conclusions are
summarized in Sect. 5.

2 A Capacitive Accelerometer

The first device considered in the present chapter is an electrically actuated capac-
itive accelerometer. This study starts from the experimental data of dynamic pull-
in (escape) systematically acquired via a frequency-sweeping process. Extensive
numerical simulations of the system’s nonlinear dynamics are developed, which are
based on the classical Lyapunov local stability theory. General good matching is
achieved. Nevertheless, these theoretical predictions are not completely fulfilled in
some aspects. In particular, the actual range of existence of each attractor is a subset
of its stability domain, and, consequently, the theoretical inevitable escape zone is
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not able to forewarn the experimental pull-in bands. This discrepancy is related to the
presence of disturbances. The present study aims at finding a theoretical justification
of the experimental evidence. This calls for further investigation, where dynamical
integrity concepts are taken into account and provide the answer to the problem.

More details related to the experimental exploration of the capacitive accelerom-
eter can be found in Alsaleem et al. (2010), and to the dynamical integrity analysis
in Ruzziconi et al. (2013d).

2.1 Device and Experimental Setup

The device under investigation is a commercial capacitive accelerometer fabricated
by Sensata Technologies (2017), Fig. 1. It consists of a proof mass suspended by
two cantilever beams. The upper electrode is formed by the proof mass, which has
a rectangular shape, with length 9 mm, width 5.32 mm, and thickness 150 µm. The
lower electrode is placed directly underneath the proof mass on a silicon substrate.
It has the same length, but a slightly smaller width, 4.4 mm. The separation gap
between the two electrodes is 42 µm.

The lower electrode provides both electrostatic and electrodynamic actuation.
When electrically excited, the proof mass oscillates in the out-of-plane direction,
i.e., out of the plane of the substrate. Although some dimensions are in millimeters,
the system has the same main characteristics of a MEMS device, since gap and
thickness are in the micro-range and the structure is actuated electrically.

The lower electrode is a ceramic-basedmaterial and the upper electrode is ametal-
based material, which helps the survivability of the device against stiction and failure
due to the repetition of the pull-in event and due to the heat generated by it. Also, in
case of pull-in, the value of the current passing through is lowered by a large resistor,
which is added in series.

Cantilever
beams

Proof mass

Lower electrode
(a) (b)

Fig. 1 The capacitive accelerometer, fabricated by Sensata Technologies (2017). a Assembled. b
Taken-apart
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Pressure
gauge

Port

The sample inside the chamber

Pump port

Electrical
wires port View port

(a) (b)

Fig. 2 a A picture of the experimental setup used for testing the capacitive accelerometer, showing
the laser Doppler vibrometer, the vacuum chamber placed on an isolation table, the Lab View card,
DC and AC supply. b The vacuum chamber and a zoom of the sample inside the chamber

We have tested extensively the device. According to our experience, it maintains
the same characteristics and it is able to guarantee repeatable results even after a large
number of tests. Thus, differently from other micro-electromechanical systems, the
analyzed capacitive accelerometer has the advantage of being more likely to survive
the repetitive failures due to pull-in, which allows a deep experimental investigation.

The experimental setup used for testing the device is represented in Fig. 2. There
are a laser Doppler vibrometer, a Lab View data acquisition system, AC and DC
power sources, a vacuum chamber, and a high vacuum pump. The device is inserted
inside the vacuum chamber, which is placed directly underneath the laser Doppler
vibrometer, such that it can measure the deflection of the proof mass.

The chamber is equipped with a viewport window, located on top and made of
quartz glass, and with some ports, located in the lateral sides. The viewport window
enables the laser to penetrate without any distortion. The lateral ports serve to supply
pressure gauge and electrical connection. They are used to hook the chamber up
to the high vacuum pump and to apply the AC and DC power sources, which are
provided via the Lab View data acquisition system.

The signal is generated via a data acquisition (DAQ) card and applied on the outer
pins shown in Fig. 1.When necessary, a power amplifier is used to amplify the signal.

2.2 Model Formulation and Parameters Extraction

Wefocus on the oscillations in the vicinity of the fundamental natural frequency of the
device (primary resonance). To describe the response in this range, a nonlinear single
degree-of-freedom lumped spring-mass model is considered, which is schematically
illustrated in Fig. 3. The capacitive sensor is modeled as a parallel plate capacitor
with two rigid plates, where the upper one is movable. The lumped mass represents
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Fig. 3 The single d.o.f.
mechanical model used to
model the capacitive sensor

d
xm

ck

VDC

VAC

the proof mass and the spring represents the two cantilever beams. The resulting
governing equation of motion is:

mẍ + cẋ + kx � ε0εr A
[VDC + VAC cos(�t)]2

2(d − x)2
, (1)

where x(t) is the deflection of the proof mass, t is the physical time, the superscript
dot denotes the time derivative, m is the effective mass of the proof mass, c is the
viscous damping coefficient due to the squeeze-film effect, k is the linear effective
stiffness of the cantilever beams, ε0 is the dielectric constant in the free space (ε0
= 8.8542 × 10−12 F/m), εr is the relative permittivity of the gap space medium
(air) with respect to the free space (εr = 1), A is the lower electrode area, d is the
capacitor gap width including the static effect of the mass weight, VDC and VAC are,
respectively, the electrostatic and electrodynamic voltage, � is the electrodynamic
voltage frequency. Since the size of the proof mass is much larger compared to the
gap width underneath, it is safe to assume negligible fringing and suppose straight
lines electric field.

The unknown parameters in Eq. (1) are k,m, and c. To extract them, experimental
characterization of the device has been conducted. We follow the procedure outlined
in Alsaleem et al. (2009, 2010). Here, we report the main steps.

The stiffness coefficient k is extracted by resorting to the static bifurcation dia-
gram and matching the experimental and theoretical predictions. Specifically, we
bias the microstructure with ramping VDC inputs and measure the stable static
deflection of the proof mass using the laser Doppler vibrometer, up to the static
pull-in phenomenon. According to the measurements, the static pull-in voltage is
observed at VDC_pull-in

∼� 115.3 V. Focusing on the spring-mass model in Eq. (1)
in the static case, from simple computations and recalling that VDC_pull-in occurs at
the saddle-node bifurcation point, it can be shown that the stiffness coefficient is k
=ε0εrA(VDC_pull-in)2/(2d3(4/27)), from which we identify k = 215 N/m.

To determine the effective mass m of the proof mass, we focus on the first natu-
ral frequency, which is experimentally measured at low electrostatic voltage and is
observed to occur at about 192.5 Hz. As m = k/ω2, the effective mass of the proof
mass is estimated to be m = 0.147 g.

Regarding the damping, various mechanisms of energy dissipation may affect the
device. Among them, squeeze-film damping contribution dominates in MEMS and
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may be considered the main source of energy loss. In our device, this is even more
pronounced since the proof is very large compared to the gap width, and hence it
pumps and sucks considerable air in and out (rubbing against the walls of the plate
causing energy loss). Hence, it is safe to assume that the only damping is coming
from squeeze-film damping. The damping coefficient c is computed by means of
the Blech model, which analytically solves the linearized Reynolds equation with
trivial pressure boundary conditions. We consider only the first term in the series
of the Blech model, since higher order terms do not affect the damping value too
much because the pressure is very low and the air is not trapped underneath the
movable mass. This yields c � (768ηe f f A2)/(π6(d − x)3)(2/(4 + σ 2/π4)) with
σ � (12Aωηe f f )/(Pa(d − x)2) and ηe f f � η0/(1 + 9.638Kn1.159), where Pa is the
ambient pressure, i.e., the pressure value of the device during its operation, which
in this case is 153 mTorr, Kn is the Knudsen number, η0 = 1.82 × 10−5 N s/m2 is
the viscosity coefficient of air, ηeff is the effective viscosity coefficient of air, which
in this case is ηeff = 1.786 × 10−7 N s/m2. About the gap space between the two
electrodes, this is varyingwith the proofmassmotion. To slightly simplify themodel,
in the damping coefficient c we assume it to be constant and equal to d, i.e., in this
term (and only in it) we drop its dependence on x. This is sufficiently accurate for
our purposes, as proven experimentally in various previous publications on the same
device (Alsaleem et al. 2009, 2010). We obtain c = 1.5 × 10−3 (N s)/m.

For convenience, we divide Eq. (1) by the extrapolated value of m. The resulting
governing equation of the nonlinear dynamics of the device becomes

ẍ + 10.1ẋ + 1.4629 × 106x � 1.2 × 10−12 [VDC + VACcos(�t)]2

(42 × 10−6 − x)2
(2)

where x is expressed in micron. Equation (2) is the single d.o.f. model used in all the
forthcoming investigation of the capacitive accelerometer.

In the following, the numerical simulations are based on the direct integration of
the ordinary differential equation by using the Runge–Kutta method. All of them are
obtained by self-developed codes implemented inMathematica andMatlab, with the
exception of the attractor–basins phase portraits, which are computed by resorting
to the software package Dynamics (Nusse and Yorke 1998) and checked by self-
developed codes via a lot of episodic investigations.

2.3 Experimental Response at Large AC Excitations

A deep experimental investigation is conducted. Many experimental frequency
response diagrams are obtained. These data come from a frequency-sweeping pro-
cess,where the electrodynamic voltage is kept constant and the frequency is increased
(forward sweep) and/or decreased (backward sweep) slowly, i.e., quasi-statically.
Both of them are necessary to catch the complete extent of the attractors. All the
experiments are attained close to an ultra-high vacuum environment, at about the
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Fig. 4 Experimentally measured frequency response diagram at VDC = 40.1 V and VAC = 18.4 V.
Forward and backward sweeps are in green dots and red squares, respectively. During the exper-
imental test, the sampling rate is 0.5 Hz/s and the pressure is 153 mTorr. The enlargements show
a neighborhood of the primary resonance, of the subharmonic resonance of order one-half, of the
superharmonic resonance of order two

same low constant (as far as possible) pressure, 153 mTorr. The frequency step is
0.5 Hz and the time step is 1 s, i.e., the sampling rate is 0.5 Hz/s, which guarantees
the steady-state condition at the end of each step, where the sweeps are recorded.

At low electric excitation, the capacitive accelerometer responds linearly (not
shown in the figures). Raising the level of the voltage load, instead, nonlinear phe-
nomena appear. As an example, we report the experimental frequency response dia-
gram at VDC = 40.1 V and VAC = 18.4 V (almost half of the electrostatic voltage),
Fig. 4. The sweep test is carried out over a wide parameter range, � = [0, 400] Hz.

Forward and backward sweeps are represented in green dots and red squares,
respectively. Since the electrostatic load is rather elevated in the present case, the
system’s natural frequency (as expected) is slightly shifted toward a smaller frequency
value with respect to what experimentally measured in the device characterization,
which was assessed at low electrostatic voltage.

We focus on the response at primary resonance. This is so large that covers an
extended part of the diagram. A zoom is reported in the top of the figure. Both the
non-resonant branch (at left) and the resonant one (at right) are observed. Each one
exists for a wide �-range, where it can safely operate the device. For a small (very
small) portionwe can see the characteristic bending of the two attractors toward lower
frequencies, which is typical of a softening oscillator. Note that at these parameter
values the device is able to offer large safe areas where it can be reliably actuated
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in safe conditions. This occurs despite the high electric excitation and despite the
resonance phenomenon.

Approaching the main resonance from both sides, each attractor crosses its own
safe region and disappears, leading to dynamic pull-in. In the present case, this takes
place when the maximum amplitude starts increasing and both the attractors are
terminated with slopes which seem to tend to infinity. The frequency response opens
up. In addition to regular oscillations, non-regular dynamics occur. The final result
is a broad frequency range, where none of the bounded attractors survives but only
dynamic pull-in is experienced, � ∼� [179.4, 188.6] Hz. As expected, this dynamic
pull-in phenomenon is triggered at a voltage load much lower than the static pull-in
threshold. This is an example of frequency response with a pull-in band.

Not only the primary resonance is activated, but also the superharmonic resonance
of order two, near half the fundamental natural frequency, and the subharmonic res-
onance of order one-half, near twice the fundamental natural frequency. Each one
of them involves a narrow interval, zoomed, respectively in the left and in the right-
hand side of the figure. At the superharmonic resonance, no particular dynamical
features are observed at this voltage excitation, except oscillations becoming higher.
At the subharmonic resonance, instead, the experimental response presents softening
behavior. The amplitude of the non-resonant branch is and remains tiny all along its
range of existence. On the contrary, the resonant attractor exhibits a sudden amplifi-
cation, undergoing a small vibration before the activation of subharmonic resonance
and rising to a large one upon it. This feature may be beneficial, e.g., for designing
sensitive sensors.

In the following, we consider the primary resonance and investigate the experi-
mental pull-in bands.

2.4 Experimental Versus Theoretical Pull-in Dynamics

We analyze a neighborhood of the device natural frequency, Fig. 5. Simulations are
overlapped with the experiments, in order to appreciate similarities and differences.

From a theoretical point of view, we can clearly observe the softening bending.
Increasing the frequency, the non-resonant branch slightly increases its maximum
amplitude eventually vanishing through a saddle-node bifurcation, at � ∼� 180.1 Hz.
Similarly, decreasing the frequency the resonant branch performs wider and wider
oscillations (considerably larger than in the non-resonant case) and finally experi-
ences a period-doubling cascade of flip bifurcations running through subharmonics
of infinitely high order, ultimately followed by chaotic motion and boundary crisis,
at � ∼� 176.2 Hz. This last sequence of events is little perceived in the figure since
is confined to a very short parameter range.

Very good matching is achieved with the experimental data. The model is able
to detect the value where the natural frequency occurs, to catch the softening-spring
behavior arising in a neighborhood of the primary resonance (although this phe-
nomenon is only slightly sketched in the experiments), to properly simulate the sep-
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aration width between the non-resonant and the resonant branch. Thus, all the main
dynamical features are adequately represented. This concurrence of results confirms
our confidence in the model, which is essential to develop any further investigation.

Nevertheless, despite the satisfactory agreement, discrepancies arise in the length
of each branch. The experimental curves of disappearance are systematically shifted
from the theoretical ones and occur in the region where each attractor is theoretically
expected to exist. The difference is minimal in the non-resonant case but really
apparent in the resonant one. While the data show a pull-in band with no bounded
motions, the simulations, instead, not only predict at least one bounded solution but
also a narrow interval where both the branches coexist.

Hence, the last part of each theoretical attractor (including the bifurcational events)
does not have an experimental counterpart. A similar difference between data and
numerical predictions has been observed by Lenci and Rega (2011a) in a parametric
pendulum, where, even in this case, the range of theoretical existence of rotations
is wider than the actual one. This mismatching is likely related to the presence of
disturbances, which are inevitably encountered under realistic conditions.

To have more complete information about the device behavior, additional simu-
lated frequency response diagrams are reported in Fig. 6. AtVAC = 10V, the attractors
coexist for a wide �-range; rising the voltage, this interval progressively reduces,
e.g., at VAC = 20 V; finally, it disappears and a widening pull-in band expands, e.g.,
at VAC = 30 V. Comparing the diagrams in Figs. 5 and 6, we can note that the pull-in
bands in the experiments are critically shifted toward lower voltage excitations with
respect to the theoretical escape zone.

For a comprehensive overview of the main dynamical events, we develop the
theoretical behavior chart in Fig. 7, which illustrates the overall scenario when both
the electrodynamic voltage and the frequency are varied. The chart describes where

0

5

10

15

20

25

30

35

40

150 160 170 180 190 200 210 220

D
ef

le
ct

io
n 

(
m

)

Frequency (Hz)

μ
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a bifurcation occurs and generates an attractor, detects which kind of bifurcation it is,
e.g., a saddle-node (SN) or a boundary crisis (BC), and bounds where each attractor
exists. Operatively, the chart is obtained by performing many theoretical frequency
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response diagrams, like the ones in Fig. 6, by detecting the frequency � and the
voltage VAC where each attractor theoretically disappears, and by reporting these
coordinates in the (�, VAC) space.

The device shares the same main qualitative features of other softening oscilla-
tors investigated in depth in the literature (Szemplińska-Stupnicka 1992; Soliman
and Thompson 1992). In a neighborhood of the primary resonance, at (�; VAC)
approximately equal to (187.4; 3), we can observe the degenerate cusp bifurcation
point where the non-resonant and the resonant attractor separate. Below this thresh-
old, the response of the system presents only one branch (the non-resonant one),
whereas, beyond it, it splits into the non-resonant and the resonant oscillations and
both of them need to be examined.

Their curves of appearance and/or disappearance denote their theoretical bounds
of existence. The region where the non-resonant attractor exists is located at the left-
hand side of the chart, from the unforced dynamics to its saddle-node bifurcation (SN
non-res). The resonant one, instead, appears at its saddle-node (SN res) and widely
extends its range of existence beyond this line, throughout all the right-hand side of
the chart. It performs the first period-doubling flip bifurcation (PD res) where the
period doubles to a subharmonic of order 2. As observed in the frequency response
diagram, this is followed by the infinite cascade of the flip bifurcations (not shown
in the figure), leading to chaotic long-term behavior and finally vanishing through
boundary crisis (BC res).

We can observe the �-shaped region, where both the non-resonant and the reso-
nant dynamics coexist, which is bounded by the SN of the non-resonant branch and
by the SN and the BC of the resonant one, i.e., at low forcing loads there are two
competing attractors and each one of them may oscillate the device exhibiting its
own characteristics.

There is the V -shaped region where the two attractors disappear. No bounded
motions may occur in this parameter range and the escape (i.e., the dynamic pull-
in) is inevitable. The higher the electrodynamic voltage is, the wider this band of
frequency becomes. This V -shaped region has vertex at about (�; VAC) equal to
(187.4; 22.1) and is bordered on the left by the SN of the non-resonant branch and
on the right by the BC of the resonant one. This feature is typically encountered in
electrically actuated microstructures with softening behavior.

In addition to the theoretical results, the chart reports the experimental dynamic
pull-in data, which are represented by dots. They are extracted from the experimental
frequency response diagrams by repeating the same procedure used to provide the
theoretical curves. In order to compare the sweeps among them, they are acquired
by adopting the same experimental conditions; specifically, we refer to the same
electrostatic voltage, pressure and sampling steps previously described.

Similarly to the theoretical predictions, the experimental pull-in data clearly
presents an instability zone indicating the parameter values wherein the capacitive
accelerometer is experimentally forced to dynamic pull-in (the reader is referred to
Alsaleem et al. (2010) for further experimental data showing similar V -zones in var-
ious different MEMS devices). The chart highlights the same discrepancies detected
in the frequency response diagrams. The experimental escape region is much wider
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than the theoretical one. The major differences are related to the resonant branch,
especially at low voltages. The experimental vertex occurs at about (�; VAC) equal
to (183.9; 9), i.e., the voltage load actually triggering the pull-in band is smaller than
the theoretical one and is shifted at higher frequency values, closer to the system’s
natural frequency.

2.5 Mechanical Properties of the Governing Equation

We focus on the Hamiltonian unforced undamped system. The associated potential
is

V (x) � 1

m

(
k
x2

2
− εAV 2

DC

2(d − x)

)
(3)

The potential function and the corresponding phase portrait are illustrated in
Fig. 8. There is a single potential well with escape barrier, which is located at right

Fig. 8 a The cubic energy
potential V (x) with single
well, hill-top saddle and
escape barrier. b The phase
portrait of the unforced
undamped system, with
center at xc = 0.776 µm,
saddle at xs = 35.942 µm
and homoclinic loop
separating bounded and
unbounded dynamics
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(toward the substrate). This asymmetry is in accordance with the asymmetry of the
device since the considered capacitive accelerometer is excited on only one side. In
conformity with the potential, the phase portrait presents two physical equilibrium
points: the elliptic center at xc = 0.776 µm, which is slightly shifted from zero due to
the contribution of the electrostatic load, and the hill-top saddle at xs = 35.942 µm.

Two different classes of oscillations can be observed: the bounded nonlinear peri-
odic orbits within the potential well, corresponding to safe regular oscillatory motion
of the device; the unbounded non-periodic solutions which tend to—∞ when t →
±∞, corresponding to the pull-in phenomenon. In-well oscillations and out-of-well
trajectories are separated by the homoclinic loop. Note its central role in organizing
the whole system dynamics. It represents a barrier for confined motions.

Implicitly, the homoclinic orbit can be defined by

t(x) � ±
∫ x

xe

dr√
2[V (xs) − V (r )]

(4)

where xe = –29.884 µm is the intersection of the orbit with the horizontal axis.
Equation (4) is an even function of the time t and can be computed only numerically.
This expression will be used in the Melnikov analysis.

2.6 Melnikov Homoclinic Bifurcation Threshold

Adding perturbations to theHamiltonian system, the stable and unstablemanifolds of
the hill-top saddle xs split. At some parameter values, they become tangent. The tan-
gency corresponds to the homoclinic bifurcation threshold. This is the phenomenon
that triggers the erosion of the potential well. It signals the beginning of the penetra-
tion via fractal tongues of the out-of-well attractor (escape) inside the safe bounded
area of the potential well. Further increasing the electric load, the erosion progres-
sively develops, until for sufficiently high excitation amplitude it totally destroys the
well.

Thus, the homoclinic bifurcation represents a very important and critical event.
Its analytical prediction can be obtained via the Melnikov perturbation theory. A
similar analysis was carried out by Gottlieb and Champneys (2005) and by Lenci
and Rega (2006) for the case of a thermoelastic electrically actuated MEMS device.
The perturbed system is deduced by assuming both the damping and the electrody-
namic force as small perturbations to the Hamiltonian case. Comparable smallness
is supposed.

The first-order distance between perturbed stable and unstable manifolds is pro-
portional to the Melinkov function M(t0), which has the standard form (Gucken-
heimer and Holmes 1983):

M(t0) � I1 + I2 sin(�t0) (5)
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where I1 depends on the damping and I2 depends on the excitation frequency and
amplitude. The values of damping, frequency, and amplitude where M(t0) has a
quadratic zero are the homoclinic bifurcation values, which satisfy the equation
|I1| � |I2|. TheMelnikov curve for the analyzed capacitive accelerometer is reported
in dotted line in Fig. 7.

The dynamic pull-in bands are considerably far from the Melnikov curve, i.e.,
the device continues being in safe conditions well above the homoclinic bifurcation,
although, as previously observed, not along all the range of theoretical existence of
the attractors.

Hence, the Melnikov curve represents a very important theoretical (and also ana-
lytical) result; nevertheless, it is impractical to limit the excitation of the device to
the Melnikov threshold, since it is too conservative. For this reason, we perform a
dynamical integrity analysis, in order to have a criterion to detect the experimental
pull-in bands and enable the designer to make use in safe conditions of all the range
of practical existence of each attractor.

2.7 Erosion of the Potential Well

To understand the discrepancies between the experimental data and the theoretical
predictions,we investigate the systemwithin the framework of the escape frompoten-
tial well theory. The device response is analyzed not only locally, by studying each
single attractor, but also globally, by focusing on the phase space metamorphoses.
Many attractor–basins phase portraits are performed when varying the electrody-
namic voltage and frequency. Examples are reported in Fig. 9. Each row corresponds
to a fixed VAC , which is ramping from the bottom to the top of the set of figures,
respectively at VAC = 4 V, VAC = 8 V and VAC = 18.4 V. Along each row, the outline
is shown when increasing the frequency excitation. The basins of attraction of the
non-resonant branch and of the resonant one are orange and green, respectively; the
escape is white, which corresponds to the system experiencing dynamic pull-in; the
attractors are denoted with a cross.

At VAC = 4 V, both the non-resonant and the resonant attractor exist and compete
in robustness. At lower frequencies, this parameter range is just above the homoclinic
bifurcation threshold detected by the Melnikov curve. We can see the onset of the
erosion of the well. The degree of fractality is very low and concerns a minimal
portion of the phase space, where the infinitely fine recurrent structure of a Cantor
set can be observed. At � = 180 Hz (Fig. 9a) the system is far from resonance. The
basin of the non-resonant branch is wide and covers almost all the bounded part
of the phase space. The basin of the resonant one, instead, is rather narrow and is
located close to the escape area, spiraling around the other basin. Fractal parts are
not so advanced and form only a thin layer around the edge of the bounded region.
At � = 184 Hz (Fig. 9b) and � = 186 Hz (Fig. 9c) the two attractors progressively
reverse the dominance. In fact, approaching the resonance, the basin of the resonant
attractor becomes wider and wider, at the expense of the non-resonant one, which
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gradually shrinks in size, up to vanishing. At � = 188 Hz (Fig. 9d) only the resonant
oscillations exist and have an extensive basin, which is mainly uneroded. Slightly
above the system’s natural frequency, this attractor is eccentric with respect to its
basin. Further increasing the frequency (not shown in the figure) the eccentricity
reduces and turns less evident. Overall, at this level of voltage, the two basins remain
close to each other and form a large and compact safe region. The escape is located
outside this safe zone. Unfortunately, we did not record experimental data at these
parameter values.

Rising the voltage, the fractal structure becomes increasingly clear. At VAC = 8 V,
the fractal (white) tongues of the out-of-well attractor start developing more rapidly,
and, remarkably, they become incursive, they invade the basin of the resonant attractor
and, through it, they penetrate inside the central core of the potential well. The escape
becomes really dangerous, since not only enters the well but also separates the basins
of the two attractors. The separation is clearly defined at the left of the system’s natural
frequency, whereas decreases and annihilates as approaching it. For example, at �

= 180 Hz (Fig. 9e) the basins are separated; at � = 183 Hz (Fig. 9f), a part of the
basin of the resonant attractor continues surrounding the basin of the non-resonant
one, even if with fractal tongues; at � = 184 Hz (Fig. 9g), the surrounding part is
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larger; at� = 185 Hz (Fig. 9h) the two basins are close to each other, which forms the
safe compact core of the well, and fractality develops outside. Further increasing the
voltage, the closeness quickly disappears all along the considered frequency range
and the two basins settle far from each other, which prevents any safe jump between
them.

At VAC = 18.4 V, pull-in data are available to be compared with the theoretical
predictions. The experimental disappearance of each attractor occurs exactly when
the compact area of its basin of attraction becomes too much reduced. We focus on
the resonant branch, since this is the case where the major discrepancies arise, and
we investigate it as the frequency is decreased.

At � = 196 Hz (Fig. 9l) only the resonant attractor exists and its basin is large
and mainly compact. Some sporadic fractal points are spreading around, especially
in a neighborhood of the hill-top saddle; however, their impact is negligible. At this
excitation level, the resonant attractor is plainly observed in the experiments and can
safely actuate the device. At� = 184 Hz (Fig. 9k), instead, its basin has been increas-
ingly eroded by the escape. Fractality outlines a few tiny curves, which develop as
well-spaced nearly parallel fingers and span all the area previously belonging to the
basin of the resonant branch. They further narrow as approaching the hill-top sad-
dle. These thin lines are organized to surround but not to enter the area successively
hold by the basin of the non-resonant branch since at these parameter values this
area remains accounted for by only the escape. All that is left of the extensive com-
pact basin of the resonant branch is only a residual part at the left-hand side of the
phase space, in correspondence of the attractor. The escape is the main feature at
this stage. The experimental disappearance of the resonant branch exactly occurs at
� ∼� 188.6 Hz, i.e., in the interval between Fig. 9l and k, where the compactness of
its basin becomes too small, which severely increases its sensitivity to disturbance.
Further decreasing the frequency, this basin ismore andmore consumed by fractality,
as can be observed in Fig. 9j, although it theoretically survives up to � ∼� 176.2 Hz.

A wide compact part around the attractor is very important to reliably operate
the device. In fact, disturbances inevitably give uncertainties to the operating initial
conditions. A wide compact area is essential to tolerate them since all the initial
conditions in this area reach the same long-term behavior at steady dynamics. Con-
versely, the non-compact region is sensitive to disturbances, because a small shift in
the initial conditions may lead to a different outcome. For this reason, the resonant
attractor vanishes in practice when it is far from its theoretical boundary crisis, i.e.,
there is a large discrepancy between its practical and theoretical disappearance.

Similar aspects occur for the non-resonant branch. We analyze it when increasing
the frequency. At � = 172 Hz (Fig. 9i), its basin is robust and the attractor exists in
the experiments. At � = 180 Hz (Fig. 9j), instead, the basin maintains smooth basin
boundaries but shrinks in size. The non-resonant branch experimentally disappears
at � = 179.4 Hz, which is in-between Fig. 9i and j, where it becomes too much
vulnerable to disturbances.

Overall, increasing the voltage excitation, safe conditions for the resonant branch
are shifted at higher and higher values of frequency, whereas for the non-resonant
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one at lower and lower levels. Accordingly, the gap subjected in practice to the escape
progressively enlarges, reducing the range for safely operating each single branch.

Also note that, when an attractor disappears in practice if its basin is located
inside the escape area, it is replaced by the escape and not by the basin of the other
attractor, even if this one exists and is still robust. This explains why in the present
case-study we have only data of dynamic pull-in and not examples of jump between
the attractors.

2.8 Dynamical Integrity Analysis

The classical theoretical analysis based on the Lyapunov stability theory is essential
to describe the dynamics that the system may exhibit; nevertheless, it is not able to
judge on their robustness, i.e., is not able to take disturbances into account. For this
reason, to detect the expected behavior under realistic conditions, we cannot restrict
ourselves to the classical simulations; on the contrary, starting from them, we need
to further improve the analysis via dynamical integrity. This is the aspect of global
analysis which illustrates if a system is sufficiently robust to disturbances.

Tools of analysis. To guarantee the accuracy of the investigation, we select the
dynamical integrity tools of safe basin and dynamical integrity measure in order to
ensure compliance with the experimental frequency sweeps.

Our objective is that of detecting the parameter ranges where each branch may
practically (and not theoretically) vanish because of the presence of disturbances.
Therefore, we use the dynamical integrity analysis to investigate the phenomenon of
disappearance of each attractor (and not other phenomena, as the discerning of jump
or dynamic pull-in). Accordingly, we consider both the non-resonant branch and the
resonant one and investigate each one of them, one by one, separately.

The safe basin is the set, in the phase space, of all the initial conditions sharing
a certain property. Many different definitions of safe basin have been considered in
the literature (Rega and Lenci 2015), according to which safe condition is desired
to be investigated. In the present case-study, since we focus on the existence and/or
disappearance of each single attractor, the safe condition is represented by having
at steady-state the motion under consideration, whereas the unsafe condition is rep-
resented by having at steady-state all the other motions, both the bounded (in this
case, the other branch) and the unbounded (escape) ones. Hence, for each attractor,
we assume as safe basin its own basin of attraction.

We measure the dynamical integrity by using the Local Integrity Measure (LIM)
introduced by Soliman and Thompson (1989). The LIM is the normalized minimum
distance from the attractor to the boundary of the safe basin, i.e., the radius of
the largest circle entirely belonging to the safe basin and centered at the attractor.
Examples of circles used in the definition of LIM are reported in Fig. 9a in solid
line. We normalize each radius with the analogous radius drawn for the non-resonant
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branch at VAC = 0.1 V and� = 180 Hz, i.e., next to the unforced dynamics (however,
other different normalizing conditionsmay be considered; results will be just scaled).

The LIM is an appropriate measure for our case-study. It takes into account the
steady-state regime (since the circle used in the computation is centered at the attrac-
tor); it considers only the compact “core” of the safe basin surrounding the attractor,
which we are interested in; it is able to rule out the non-compact regions, which are
dangerous in practice. For all these reasons, the LIM is suitable for the analysis of
the present experimental data, which are coming from a sweeping process, where at
the end of each step the system is in steady-state conditions. Nevertheless, seeing the
shape of the considered attractors, also other dynamical integrity measures could be
accurate, as for instance the Integrity Factor proposed by Lenci and Rega (2003).

Dynamical integrity profiles. For the analysis of the structural safety of the device,
we build dynamical integrity profiles, where we report the LIM as a function of the
frequency, at a certain fixed VAC value. Operatively, once fixed VAC , each integrity
profile is obtained by performing many attractor–basins phase portraits at different
values of �, by computing the LIM (normalized radius) for both the non-resonant
and the resonant branch, and by plotting LIM versus frequency. The integrity profiles
at VAC = 15 V and VAC = 30 V are reported in Fig. 10 in the range � = [165; 215]
Hz.

We focus on the case at VAC = 15 V and analyze the resonant attractor. We can
clearly distinguish three different parameter regions. (i) Above the natural frequency,
the LIM dynamical integrity is really elevated. There is a nearly constant plateau,
where LIM reaches and overcomes LIM = 90%, i.e., the resonant branch is very
robust against disturbances. This is due to the large basin of attraction of the attractor.
Experimentally, the resonant oscillations are clearly visible in practice all along this
�-range, despite the presence of disturbances. (ii) Approaching the resonance, a
sudden fall occurs, which develops in a very small interval. The LIM dynamical
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integrity drops abruptly from LIM = 80% at about � = 195 Hz down to LIM = 10%
at about�=185Hz, i.e., becomes practically residual. Froman attractor–basins point
of view, this is related to fractality, which enters the potential well and increasingly
erodes the basin of attraction of the resonant branch, decreasing dramatically the
safe area and producing a strong deterioration in the reliability of the system. Due
to this fall, the attractor loses robustness and becomes exposed to disturbances.
Experimental dynamic pull-in appears precisely in this range. (iii) Further decreasing
the frequency, the LIM additionally reduces, but the drop turns from sharp to more
gradual and slowly leads to the complete disappearance of the attractor. The basin
of attraction is almost completely fractal and its magnitude is actually trivial. We are
not able to catch the resonant branch in this interval.

The non-resonant attractor has a similar behavior. Far from resonance, the LIM
reaches elevated values, over LIM = 50%. Approaching the resonance, instead, the
LIM completely drops, as in the resonant branch, except that in this case the fall
straight leads to the disappearance of the attractor, without the extended region with
a tiny LIM.

Varying the electrodynamic voltage, the main features characterizing the integrity
profiles do not qualitatively change, both in the non-resonant and in the resonant
attractor. However, they are progressively shifted. Increasing VAC , e.g., at VAC =
30 V, they appear at higher values of frequency in the resonant branch and at lower
ones in the non-resonant one. This widens increasingly the gap between the pull-in
bands. Also, comparing the integrity profiles at VAC = 15 V and VAC = 30 V, we
can see that in the resonant attractor the range with a very narrow basin lengthens
extensively at low electrodynamic voltages, amplifying the discrepancy between the
theoretical curve of boundary crisis and the dynamic pull-in data; conversely, this is
by far more reduced at higher excitations.

In Fig. 11 we report the frequency response diagrams and the integrity profiles,
at VAC = 30 V. They are overlapped to each other (in the latter, the sampled points
are denoted with a black square). Regarding the resonant branch, only vibrations of
small amplitude are equipped with a large structural safety. Increasing the amplitude,
the robustness drops. Vulnerability critically amplifies. The wide final range, where
the amplitude of oscillations is very high ending with period-doubling cascade and
possibly chaotic motion, is associated with an extremely small and fractal safe basin.
TheLIM is irrelevant in this interval. From a practical point of view, these phenomena
cannot be caught in practice. Similarly occurs in the non-resonant branch, where the
range close to the saddle-node bifurcation is actually vulnerable.

Dynamical integrity chart. A comprehensive description of the device dynamical
integrity when both the frequency and the electrodynamic voltage are varied can be
achieved by computing theLIMdynamical integrity chart, Fig. 12. This is obtained by
performing several integrity profiles at different values ofVAC and plotting the curves
of constant percentage of LIM. They summarize the overall scenario of structural
safety.We can observe that the experimental pull-in bands follow exactly the integrity
curves.
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Fig. 11 Frequency response diagram and dynamical integrity profile (the sampled points are
denoted with a black square), at VAC = 30 V
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the attractors. The curves of theoretical appearance and/or disappearance of the non-resonant and
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denote the experimental pull-in data

We focus on the resonant branch. Here the matching is really astonishing. We can
clearly distinguish the three parameter ranges detected in the integrity profiles. (i)
Beyond the natural frequency, there is the range with elevated LIM, which consists
of a wide interval with slow development of integrity curves. In the profiles, this
reflects the region of nearly constant plateau with high dynamical integrity, which
is the safe area where the attractor exists and can be used safely. (ii) Decreasing



www.manaraa.com

138 L. Ruzziconi et al.

the frequency, we can observe a small range characterized by a rapid occurrence of
many integrity curves, where the attractor completely loses its robustness, switching
from being able to tolerate considerable disturbances in safe conditions to being
totally vulnerable. This is related to the sudden fall in the LIM integrity profiles.
This region is in very good agreement with the experimental resonant pull-in band,
which settles exactly at LIM = 30–40%, i.e., develops in a precise and very narrow
interval of dynamical integrity. The smallness of the narrow interval is in agreement
with the experiments, since all the data are acquired under (approximately) the same
experimental conditions (e.g., with the same sampling steps, at practically constant
pressure, etc.), and therefore, the attractor is expected to disappear at about the same
level of dynamical integrity along all the voltage loads. Note that for the considered
experimental conditions, this narrow strip leading to the practical pull-in seriously
shortens the range of existence of the attractor than what predicted by the theoretical
threshold of boundary crisis (LIM = 0%). (iii) For even lower frequency values, there
is a large region where the integrity curves develop gradually and progressively lead
to the curve of theoretical disappearance. This corresponds to the residual integrity
in the profiles.

It is worth analyzing the outline of the iso-LIM curves. Moving far from the
boundary crisis, they progressively modify their shape and finally largely differ from
it. Specifically, the curve of boundary crisis is nearly straight andmoderately inclined;
the iso-LIM contour plots, instead, gradually increase their inclination tending to
be vertical and progressively develop a configuration slightly concaved up. This is
because, before disappearing, the resonant branch presents a very long part with an
extremely narrow basin of attraction. The experimental pull-in data actually share the
same shape experienced by the dynamical integrity curves, whereas the theoretical
curve of boundary crisis is completely disregarded.

Similar features are observed in the non-resonant branch. In this case, the iso-
LIM curves evolve practically in parallel with the saddle-node bifurcation threshold,
keeping approximately the same shape and inclination. Far from it, they decrease
slowly and develop at about constant steps with a wide distance between each other,
i.e., the deterioration (or the increment) of the dynamical integrity is rather slow.
Approaching the saddle-node bifurcation, instead, there is a sudden fall in dynamical
integrity, where the integrity curves become closer and closer and drop abruptly to
disappearance. The experimental non-resonant pull-in band occurs at LIM = 0–30%.

Therefore, for each attractor, the integrity curves divide the region of its theoretical
existence into two different zones, namely the area of practical existence and the area
of practical disappearance. In the range of practical existence, the attractor can be
reliably observed in practice. In the range of practical disappearance, the attractor
exists in the theoretical predictions but cannot be used in practice because is actually
vulnerable. To operate the device in safe conditions with a certain final motion, this
last region has to be avoided. This area may be quite narrow, as for the non-resonant
attractor, or wide, as for the resonant one. In fact, we can rely on the non-resonant
branch along almost all its range of theoretical existence; conversely, we can rely on
the resonant one only in a really smaller interval. Thus, this case-study highlights
that the practical disappearance can be considerably far from the theoretical one.
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Since the iso-LIM curves are able to properly detect the range where an attractor
effectively vanishes in practice, the dynamical integrity chart can be used to provide
a valuable theoretical tool to interpret the experimental behavior. This theoretically
justifies the experimental evidence. Moreover, each integrity chart sketches not only
the curves detecting the range of experimental disappearance of the corresponding
attractor, but alsomany other curves at different levels of constant percentage of LIM.
Accordingly, the chart is able to abstract from the particular case-study and examine
a more general scenario, where different disturbances are assumed. It illustrates that
the wideness of the range where each attractor practically exists may be enlarged
(reduced) by decreasing (increasing) the disturbances, i.e., the chart may be used
also to predict the expected boundaries of disappearance of each attractor.

The obtained results validate the use of the dynamical integrity analysis as an
indicator of the amount of uncertainty in the operating initial conditions and in
the model. The chart may serve as a guideline for the engineering design, since,
depending on the magnitude of the expected disturbances, it can be used to establish
safety factors in order to operate the device in safe conditions with the desired
behavior.

The loss of structural safety in the analyzed mechanical system is summarized in
Fig. 13 with a schematic dynamical integrity chart, where safe and unsafe parameter
regimes are illustrated. Three basically different regions are detected, i.e., (i) the
safe no-escape area, where at least one of the two attractors exist in practice (dark
grey); (ii) the practical escape area, whose wideness depends on the magnitude of
disturbances, where both the non-resonant branch and the resonant one disappear
in practice (light grey); (iii) the theoretical inevitable escape, where no bounded
attractors are expected to exist (white).

3 A Microbeam-Based MEMS Device

The second case-study deals with an electrically actuated microbeam-based MEMS
device. The microbeam has non-negligible imperfections in the geometry, which
are related to the microfabrication process. Although a deep experimental charac-
terization is conducted, various parameters of the device remain unknown and/or
uncertain, as often occurs in practice.

Many experimental tests are performed in the range where both the non-resonant
and the resonant attractors exist and exhibit safe jump between each other. A theoreti-
calmodel is introduced, where the unknowns are identified based on the experimental
response. Referring to this model, a dynamical integrity analysis is developed. Sim-
ilarly to the capacitive accelerometer, this analysis is able to properly interpret and
predict the experimental data.

In the present case-study, we can clearly observe the importance of the dynamical
integrity investigation to detect the range of applicability of the model. In fact, this
analysis is able to distinguish the parameter range where the model can be reliably
applied and to alert the parameter range where, conversely, its accuracy is decreased
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and may actually become unsatisfactory. This suggests the application of dynamical
integrity arguments in the identification process.

The experimental campaign on the microbeam-basedMEMS device is performed
in Ruzziconi et al. (2013a), the identification process is reported in Ruzziconi et al.
(2013f), and the dynamical integrity analysis is developed inRuzziconi et al. (2013c).

3.1 The MEMS Device and Its Experimental Natural
Frequencies

The considered MEMS device consists of a polysilicon microbeam actuated by an
electrode, placed directly underneath it on a substrate, Fig. 14. The electrode provides
both an electrostatic and an electrodynamic load, where VDC is the electrostatic
voltage and VAC cos(�̂t̂) is the electrodynamic excitation, with voltage VAC and
frequency �̂. The microbeam, although designed to be straight, is curled up of few
microns, which is a typical imperfection due to the microfabrication process. Other
small imperfections arise at the boundary conditions, where some portions of the
pads next to the edges are vibrating as if the effective length were slightly longer
than what actually measured (at about 20–30 µm longer at each edge).

Some dimensions of the device are directly attained via the experimental charac-
terization. Nevertheless, no precise information is supplied about various parameters,
since they cannot be detected via the available experimental setup. Some of them
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Fig. 14 a A general view of the MEMS chip. b A top-view picture of the analyzed MEMS device

Fig. 15 Experimental frequency response at white noise and low pressure, withVDC = 1V andVAC
= 1 V. The first four measured natural frequencies occur at �̂ = 114.96 kHz (first antisymmetric),
�̂ = 148.32 kHz (first symmetric), �̂ = 436.30 kHz (second antisymmetric), and �̂ = 448.63 kHz
(second symmetric)

are completely unknown (e.g., the contribution of the arched shape and the contribu-
tion of the residual stresses); some others, instead, are known only via their nominal
value, which is certainly a valuable reference, but it may somewhat differ from the
actual measurement (e.g., the gap and the thickness).

Anextensive experimental investigation is performed.Weexperimentallymeasure
the first four natural frequencies. The resulting frequency response is reported in
Fig. 15, which shows the velocity versus the frequency along all the desired �̂-
range. This is acquired by exciting the microstructure with white noise of VDC = 1 V
andVAC = 1V. The first four natural frequencies are detected at about �̂= 114.96 kHz
(first antisymmetric), �̂ = 148.32 kHz (first symmetric), �̂ = 436.30 kHz (second
antisymmetric) and �̂ = 448.63 kHz (second symmetric). They are expected not to
significantly vary at a small VDC , i.e., they may be considered representative of the
device first four natural frequencies within the assumption of a small electrostatic
load.
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Fig. 16 Experimental mode shapes at a �̂ = 114.96 kHz (first antisymmetric natural frequency)
and b �̂ = 148.32 kHz (first symmetric natural frequency)

To guarantee a correct attribution of each frequency value to the corresponding
mode shape, we have video-recorded the vibration of the microstructure at each
frequency. Two examples are reported in Fig. 16. The snapshots at �̂ = 114.96 kHz
(Fig. 16a) show the first antisymmetric mode, where only the points in the middle of
the microbeam are not oscillating (in addition to the points at the boundaries). The
snapshots at �̂ = 148.32 kHz (Fig. 16b) show the first symmetric mode, where all
the points are vibrating (except for the boundaries). Note that the first mode of the
experimental microbeam is antisymmetric instead of symmetric, which is likely due
to the associated combination of mechanical and geometrical parameters ensuing
from the microbeam being curled, i.e., this is another effect of imperfections.

3.2 Experimental Multistability

We experimentally observe the nonlinear phenomena arising in the device response
in a neighborhood of the first symmetric resonance, when both the frequency and
the electrodynamic voltage are varied. Several experimental frequency sweeps are
acquired. They are attained at VDC = 0.7 V, which is close to the electrostatic load
previously considered. Twoof the resulting frequency response diagrams are reported
in Fig. 17, which illustrates the response at VAC = 2 V and VAC = 4 V. Forward and
backward sweeps are, respectively, in red stars and blue circles. To compare the
sweeps among them, the same experimental conditions are adopted. Specifically, the
frequency step is 5 Hz and the pressure is kept (practically) constant at 40 mTorr. All
the diagrams are measured at about the same point along the external profile of the
microbeam, where the laser is directed. We analyze the obtained experimental data
when increasing the VAC voltage excitation.

At VAC = 2V (Fig. 17a), the frequency response curve exhibits softening bending.
This feature provides an interval where both the non-resonant branch (left frequency
curve) and the resonant one (right frequency curve) coexist, i.e., two different kinds
of oscillations with different characteristics may take place at the same values of (�,
VAC). The microstructure can respond under safe conditions both with a large motion
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Fig. 17 Experimental frequency sweeps atVDC = 0.7 V and a VAC = 2V, bVAC = 4V. The forward
and backward sweep are, respectively, in red stars and blue circles

andwith a small one. This equips the device of a certain versatility of behavior, which
is valuable in a variety of applications.

At VAC = 4 V (Fig. 17b), the resonant branch considerably expands its interval
of existence, which provides an interesting widening of the range of multistability.
In addition, we can observe the activation of two superharmonic resonances. The
presence of superharmonics contributes to make the dynamics even more complex
and interesting for practical applications. The ⅓⅓ superharmonic of the second sym-
metric frequency occurs at �̂ ∼� 149.15 kHz, which is along the resonant branch.
The ⅓⅓ superharmonic of the second antisymmetric one occurs at �̂ ∼� 145.3 kHz
and concerns both the resonant and the non-resonant attractor. In a neighborhood of
these superharmonics, the oscillation amplitude experimentally measured amplifies,
though only slightly. In the former, it is clearly visible (albeit small) an incipient
bending toward the left.

Technically, in some sweeps there is a blank hole in the non-resonant branch, e.g.,
at about �̂ = (143.4; 145) kHz in Fig. 17b. This is because the frequency sweeps are
attained with a small frequency step, which is very time consuming and expensive
to be acquired. For this reason, we prefer to perform the sweep in a neighborhood
of the critical points, e.g., next to the disappearance of the attractors and next to
the superharmonic resonances, whereas we neglect the parts where the sweep is not
expected to show particularly relevant phenomena.

We deeply investigate the range VAC = [0; 5] V, after which the microstructure
stopped working correctly, probably due to the deterioration of the device.

At disappearance, no one of the attractors undergoes dynamic pull-in (escape).
This is because we are examining the device behavior at relatively small VAC exci-
tations, whereas higher voltages are required to trigger the pull-in phenomenon. All
the sweeps, instead, exhibit a safe jump, which can be either from lower to higher
response or vice versa. Note the relevant difference between themaximum amplitude
of the non-resonant branch and the resonant one.At jump, this provides a large stroke,
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which is desirable in many different applications since enhances the signal-to-noise
ratio, i.e., the quality of the signal.

Multistability combinedwith jumps (with large stroke) offers an interesting behav-
ior from a practical point of view since there is the opportunity to activate a hysteretic
loop between the non-resonant and the resonant oscillations. This is appealing for
instance infilters,wherewe are looking for an intervalwith large oscillations bounded
by ranges with small ones, and in detection, where the device is expected to exhibit
a certain motion and to switch into a different kind of oscillation upon detection of
a physical parameter. Also, the frequency curves achieved in the present case-study
refer to moderately low values of electrodynamic excitation, i.e., these phenomena
may be triggered at low power consumption, which is even more desirable.

The relevance of all these nonlinear dynamic features in applications underlines
the importance of detecting where the disappearance of each attractor effectively
occurs under realistic conditions, i.e., where we can count on an effective multista-
bility of the attractors.

3.3 Model Formulation

We introduce a simple model which, despite the inevitable approximations, is able to
take into account the main imperfections arising in the characterization. In particular,
the device ismodeled as amicrobeamwith lengthL, fixed–fixed boundary conditions,
and constant rectangular cross-section of width b and thickness h. A schematic is
shown in Fig. 18.

The imperfections at the boundaries are simulated by assuming an effective
length which includes the segments of the pads that are actually vibrating due to
undercut. The curled-up configuration is assumed to be derived both from residual
stresses and from shape imperfections. Residual stresses are represented by a con-
stant axial loadP, which produces the axial displacementwB at the right endB. Shape
imperfections are modeled via a shallow-arched initial configuration, expressed as
y0(ẑ) � (1/2)y0(1−cos(2π ẑ/L)), where y0 is themaximum initial rise. The shallow-
arched approximation is assumed.

Themicrobeam is described in the framework of the Euler– Bernoulli theory and a
linearly elastic isotropic and homogeneous material is supposed. After “condensing”
the axial displacement w(ẑ,t̂) by a classical procedure so that the elongation of the
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Fig. 18 A schematic of the MEMS device
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central line of the microbeam does not depend on ẑ but only on t̂ (Villaggio 1997),
the non-dimensional governing equation of the transverse deflection becomes

v̈ + ξ v̇ + v′′′′ + α(v′′ + y′′
0 ) � −γ Fe, (6)

where

α � n − ka
∫ 1

0

(
1

2
(v′)2 + v′y′

0

)
dz (7)

and

Fe � (VDC + VACcos(�t))2

(d − v(z,t) + y0(z))2
(8)

and the boundary conditions are

v(0, t) � 0, v(1, t) � 0, v′(0, t) � 0, v′(1, t) � 0. (9)

The superimposed dot and prime denote the derivative, respectively with respect
to the non-dimensional time t and the space z. The non-dimensional variables are

z � ẑ

L
, t � t̂

T
, (10)

andwe express inmicrons the remaining variables of length. The resulting parameters
become

ka � E A

E J
, γ � 1

2
ε0εrAc

L3

E J
, ξ � c

L4

E JT
, T �

√
ρAL4

E J
, � � �̂T, (11)

where EA is the axial stiffness, EJ is the bending stiffness, A and J are the area and
the moment of inertia of the cross-section, E is the effective Young’s modulus, ρ

is the material density, d is the gap width between the stationary electrode and the
ideal straight configuration, Ac = bL is the overlapped area between the microbeam
and the stationary electrode, ε0 is the dielectric constant in the free space, εr is the
relative permittivity of the gap space medium with respect to the free space, and c is
the viscous damping coefficient.

Equation (6) has both a geometrical nonlinearity (within the operator α), which
is due to the mid-plane stretching and an electrical nonlinearity (Fe), which is due
to the presence of the electric force.
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3.4 Identification Process

To identify the unknowns, an identification process is carried (Ruzziconi et al. 2013f).
Here, we briefly report the main aspects, since they outline the need of dynamical
integrity arguments also for identification purposes.

Since the adopted mechanical model inevitably has various approximations, we
cannot expect to identify the unknowns in order that every single experimental result
can be theoretically simulated and matched. For this reason, we restrict the identi-
fication and focus only on the first symmetric natural frequency, which is the range
of interest for the forthcoming analysis. Based on these considerations, the iden-
tification process is developed in the frequency-domain, in order to check that all
the main linear and nonlinear phenomena in the device experimental response in a
neighborhood of the analyzed natural frequency are adequately represented.

Special attention is devoted to identifying the parameters in order to have a correct
representation of the extent of each branch. In fact, as highlighted by dynamical
integrity concepts, we cannot observe under realistic condition all the theoretical
extent of the frequency response curves, since disturbances reduce in practice the
range of existence of each attractor. Also, if the frequency sweeps were conducted
under smaller disturbances, e.g., with a smaller frequency step, being equal all the
other experimental conditions, the experimental extent of each branch would have
been slightly longer. Thus, the model is certainly called to realize of all the range of
existence of each attractor, which is an essential part of the actual response. However,
this is not enough. In fact, the theoretical curves slightly exceed the experimental
ones, which is in agreement with the fact that the dynamical integrity analysis allows
not only interpreting the available experimental data but also simulating the device
under different experimental conditions.

In accordance with the identification process, we refer to the dimensions: L =
440 µm, b = 55.8 µm, h = 1.873 µm, y0 = 1.323 µm, n = 64.274, E = 1.66 ×
1011 N/m2 (polysilicon material), ρ = 2332 kg/m3 (polysilicon material), εr = 1
(air), ξ = 0.085, d = 0.7 µm. Note that, regarding the dimensions where we have a
nominal reference, the identified value is very close to the nominal one. The resulting
parameters are ka = 3.45285 µm−2; T = 4.26387 × 10−5; γ = 1.85135 µm3.

It is worth highlighting that, although the identification is focused only on the
first symmetric resonance and its neighborhood, the model is able to match also
the second symmetric one, which goes beyond what expected. However, it is not
able to catch the antisymmetric frequencies and the related superharmonics. This
alerts that the microstructure may have other defects in addition to the principal
ones actually considered, i.e., the model may be further improved. This discrepancy
confirms the complexity in modeling the analyzedMEMS device and underlines that
the imperfections in the microbeam cannot be disregarded and they considerably
complicate the investigation.
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3.5 Galerkin Reduced-Order Model

Assuming the electrostatic contribution as negligible, which is an acceptable approx-
imation since we deal with a small VDC , both the static nonlinear equation and the
eigenvalue problem associated to the linear unforced undamped dynamics can be
solved in closed form. Consequently, the static deflection is

vs(z) � 1

2
1.327(1 − cos(2π z)) (12)

and the first symmetric mode is

φ(z) � 1.1665sin(7.1172z) + 2.6334cos(7.1172z)

−1.4939sinh(5.5574z) + 1.5055cosh(5.5574z) − 4.1389cos(2π z). (13)

These results are collected to generate a reduced-order model. After approximat-
ing the microbeam deflection as v(z,t) ∼� vs(z) + ΣM

i�1φi (z)xi (t), where vs(z) is the
static configuration and φi (z) are the corresponding mode shapes, the single first
symmetric mode dynamics (M = 1) are considered and the Galerkin technique is
applied, which yields

ẍ + 0.085ẋ + 1564.41x − 1033.40x2 + 209.72x3

+1.851(VDC + VACcos(�t))2
∫ 1

0

φ(z)dz

(d + vs(z) + y0(z) + xφ(z))2
� 0. (14)

Since the integral term in the electric contribution is not very practical to be com-
puted at each time step, we approximate it via Padé curve fitting. To retain the key
aspects of the device response, the Padé coefficients are detected by requiring the
fulfillment of the most significant quantitative and qualitative features of both the
electric potential and of the potential energy. This is essential to continue ensuring
a proper representation of both the in-well and the out-of-well dynamics. A detailed
discussion about the small approximations deriving from the performed Padé approx-
imation has been developed by Ruzziconi et al. (2013a).

The single d.o.f. reduced-order model becomes

ẍ + 0.085ẋ + 1564.41x − 1033.40x2 + 209.72x3

− 1.33949

(2.05926 − x)2
(VDC + VACcos(�t))2 � 0 (15)



www.manaraa.com

148 L. Ruzziconi et al.

where x(t) is the modal coordinate amplitude. Equation (15) is the reduced-order
model that we use for the forthcoming simulations.

3.6 Theoretical Predictions Versus Experimental Data

We simulate the experimental dynamics via theoretical frequency response diagrams,
which represent the maximum amplitude of the oscillations. Examples are reported
in Fig. 19, expressed in dimensional form and overlapped with the experimental data.
Since no exact information was recorded about the point of the microbeam where
each experimental sweep is acquired, the maximum amplitude is scaled up to reach
a proper fitting of the amplitude of the resonant branch. To enhance the readability
of the pictures, the exceeding parts of the theoretical resonant attractor are sketched
in dashed line.

Theoretical predictions and experimental response nearly coincide, i.e., the the-
oretical curves show that the model is able to achieve a very good matching. This
occurs not only at low electrodynamic voltages (Fig. 19a) but also at higher ones
(Fig. 19b). The theoretical model is able to alert the relative difference in the max-
imum amplitude of oscillations between the two branches, i.e., the jump with large
stroke.

However, the comparison between experiments and simulations highlights that
the range of existence of each attractor, and consequently the multistability zone,
is smaller in practice. In the theoretical curves, both the non-resonant branch and
the resonant one lose stability (in classical sense) by saddle-node (SN) bifurcation,
after which they vanish. In the experiments, the response directly jumps from one
branch to the other one at points different from the bifurcation values predicted
in the theoretical curves. On the one hand, the simulations are able to catch all the
experimental extent of both the attractors and not only a part of it, which corroborates
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branch and of the resonant one are represented, respectively, in diamonds and circles

the reliability of the model. This aspect is essential for any further analysis. On the
other hand, this discrepancy emphasizes the need for developing dynamical integrity
investigations to be interpreted.

Another discrepancy with the experiments is represented by the superharmonic
resonances. Of course, the performed simulations are not able to catch the ⅓⅓ second
symmetric superharmonic, which occurs at �̂ ∼� 149.5 kHz, and the ⅓⅓ second anti-
symmetric one, which occurs at �̂ ∼� 145.3 kHz, since the model in Eq. (15) includes
only the single first symmetric mode dynamics and does not take other modes into
account. This issue is addressed by Ruzziconi et al. (2013a), where a two-degree-
of-freedom reduced-order model is developed, which is able to represent also the ⅓⅓
second symmetric superharmonic.

To illustrate the overall scenario of the main dynamical events, we develop the
frequency-electrodynamic voltage behavior chart, which is reported in Fig. 20 along
with the measured experimental data. Qualitatively, this represents a small part of
the chart analyzed in the first case-study in Sect. 2, corresponding only to a small
portion up to the lower part of the �-shaped region, which is characterized by the
coexistence of the two attractors.

The degenerate cusp bifurcation point occurs at (�, VAC) approximately equal
to (39.6, 0.14). The two curves of saddle-node SN delimitate the range of param-
eters where both the non-resonant and the resonant oscillations coexist. The chart
clearly illustrates the considerable enlargement of the present range of theoretical
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multistability,which gradually characterizeswider andwider frequency values,when
increasing VAC . This phenomenon is deeply influenced by the resonant branch since
a slight increment of VAC provides a large shift of its SN bifurcation toward lower
frequency values, which significantly broadens the range of existence of the attractor.
The non-resonant branch, instead, reduces its extent when VAC increases, but this
decrement is not substantial.

The experimental data of disappearance are overlapped to the theoretical results.
They are denotedwith diamonds and circles, respectively for the non-resonant and the
resonant branch, and confirm the discrepancies highlighted in the frequency response
diagrams.

3.7 The Practical Disappearance of the Attractors

To investigate the device from a global perspective, we perform attractor–basins
phase portraits. Some examples are reported in Fig. 21, at VAC = 3.5 V. The basins
are orange and green, respectively, for the non-resonant and the resonant branch. The
white color denotes the escape.

Approaching the resonance, the resonant branch appears. At� = 38 (Fig. 21a), its
basin is still rather narrow, whereas the other basin is particularly wide. Increasing�,
this outline rapidly changes. At � = 38.8 (Fig. 21b), the two basins are comparable.
Each one of them presents a compact area, which is appreciably large and mainly
develops around the attractor, and a non-compact one, which is even wider and
consists of thin tongues spiraling around the compact part. Further increasing �, the
basin and the compact part of the resonant branch significantly enlarge at the expense
of the basin of the non-resonant one, which considerably shrinks. At�= 39 (Fig. 21c)
the magnitude of this last basin is still wide. At � = 39.22 (Fig. 21d), instead, it
becomes nearly residual. The non-resonant branch experimentally disappears at � =
39.08 (�̂ = 146.55 kHz), i.e., between the two last attractor–basins phase portraits,
where the compact area of its basin becomes too small to endure the presence of
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Fig. 21 Attractor–basins phase portrait at VAC = 3.5 and (from left to right): a � = 38; b � = 38.8;
c � = 39; d � = 39.22
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disturbances. Similarly, the experimental disappearance of the resonant branch arises
at � = 38.59 (�̂ = 144.71 kHz), which is between Fig. 21a and b.

At the experimental disappearance, note that each attractor and the compact part
of its basin are located far from the escape. They are immersed and surrounded by
the other basin. This outline guarantees the safe jump between the two branches, as
observed in the experimental data.However, further amplifying the electric excitation
beyond the analyzed range, the resonant attractor and its basin turn closer and closer
to the escape (not shown in the figures) and finally undergoes dynamic pull-in.

We analyze the practical disappearance of each branch by developing dynami-
cal integrity profiles. Operatively, this analysis is similar to the one developed for
the capacitive accelerometer in Sect. 2. The same definitions of safe basin and the
same dynamical integrity measure (LIM) are considered. The attractor–basins phase
portraits are sampled using a grid of � = 0.1 Hz (or less). Results are reported in
Fig. 22.

We focus on the resonant branch and analyze the range� = [37.8; 39.3], Fig. 22a.
As an example, we consider the profile at VAC = 3.5 V. At � = 39.1, there is LIM
∼� 15%, which is not particularly wide, but is still large enough to guarantee that
the attractor is experimentally visible. Decreasing �, the LIM slowly slides down
to smaller values. This fall produces a significant loss of the attractor’s dynamical
integrity. The smaller integrity enhances the sensitivity of the system to unexpected
excitations, and eventually makes the attractor exposed to the experimental dis-
turbances. This is the range where the resonant branch experimentally disappears,
precisely at � = 38.59, with LIM ∼� 6.64%. The last part of the integrity profile
is characterized by a minimal dynamical integrity. The LIM keeps decreasing, but
slower, up to the disappearance of the attractor (not shown in the figure). Since the
dynamical integrity is only residual, the sweeping process cannot catch in practice
this remaining theoretical range of existence of the attractor.

Comparing the frequency response (Fig. 19b) to the integrity profile (Fig. 22a)
when � decreases, the amplitude of the resonant oscillations gradually increases
while the dynamical integrity drops. Moderately large vibrations can be experimen-
tally observed since they are equippedwith an acceptable integrity. Conversely, larger
oscillations are structurally weak and cannot exist from a practical point of view.

Varying the electrodynamic voltage, the main features in Fig. 22a essentially
remain unchanged, except for some minor differences. At VAC = 2.5 V, the range
with negligible LIM is nearly imperceptible, then, it successively broadens. When
increasing VAC , the values of LIM corresponding to the experimental disappearance
slightly increase but remain confined in a precise and very narrow interval, LIM =
6.2–6.8%. Only exceptions occur at higher VAC , in particular at VAC = 4.5 V, where
the resonant branch disappears at LIM∼� 7.5%, and at VAC = 5 V, where it disappears
at LIM ∼� 8.9%. These values are slightly higher, but not excessively. This fact may
be due to the model. As explained in Sect. 3.3 and underlined by Ruzziconi et al.
(2013a, c, f), we are aware that the present model has many approximations since
many physical parameters are unknown. RaisingVAC , the effects of the nonlinearities
increase and the effects of the approximations of the model amplify, which affects
the reliability of the results. Nevertheless, it may be related also to deterioration of
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Fig. 22 LIM dynamical integrity profiles to analyze the practical disappearance for a the resonant
branch and b the non-resonant one, at different VAC values

the device, which is due to the multiplicity of the performed experiments. Note that
the experimental backward sweep at VAC = 5 V was the last sweep that we were able
to achieve, after which the microstructure broke.

A similar dynamical integrity analysis is developed for the non-resonant branch.
According to the remarks in the attractor–basins phase portraits (Fig. 21), the compact
part of its basin strongly reduces very close to the curve of disappearance, whichmay
make the attractor vanish in practice in this neighborhood. On the contrary, slightly
far from this curve, this attractor has a basin with a large compact part, since the
resonant branch either does not exist or has a small basin. Consequently, in this
range the attractor is expected to have a broad dynamical integrity, i.e., to be robust
to disturbances. For this reason, in the non-resonant case, we can investigate the
dynamical integrity in a smaller interval than in the resonant one. In particular, we
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consider � = [38.3; 39.35], since this is the most critical range where the attractor
needs to be analyzed from a dynamical integrity perspective (Fig. 22b).

Considering VAC = 3.5 V at increasing �, the integrity profile initially declines
slowly, then descends more rapidly, and finally falls within a narrow range, which
directly ends with the theoretical SN bifurcation. The experimental disappearance
occurs at LIM ∼� 17.7%. This layout does not substantially modify as varying VAC .
Similarly to the resonant branch, when VAC increases, the experimental disappear-
ance occurs at a slightly higher LIM. Nevertheless, we can identify a precise range
where the attractor experimentally vanishes in all the analyzed frequency sweeps,
LIM = 16–19%. Even if this interval is slightly larger than the one observed for the
resonant branch, it corresponds to a small band of frequency, where the attractor may
practically vanish.

The loss of robustness is very rapid in the non-resonant case. In the resonant one,
instead, the fall is slow, and, consequently, a small interval of LIM denotes a broad
band of frequency. Hence, accuracy in detecting the LIM is particularly valuable in
the resonant branch, more than in the non-resonant one.

The dynamical integrity charts are reported in Fig. 23. We can observe that they
succeed in predicting properly the experimental data. In the resonant branch, Fig. 23a,
safe conditions are ensured at LIM>8%(except atVAC =5V).Below this percentage,
the attractor is practically vulnerable. It is at about LIM = 6–8% that, in practice,
the final motion may become different from the theoretical predictions, leading to
a jump to the other branch. The last range with LIM < 6% actually does not exist
under realistic conditions, with the present expected disturbances. Similarly, the non-
resonant attractor, Fig. 23b, can safely operate the device up to LIM > 20%. Then,
the LIM drops faster (the lines of constant percentage of LIM are really next to
each other) up to the disappearance of the attractor (at SN non-res). At about LIM
= 15–20%, which corresponds to a tiny frequency range, the response jumps to the
other branch. The final range of existence of the attractor is only theoretical.

These results highlight that, despite numerous uncertainties in the model, dynam-
ical integrity is able to detect a precise range of LIM, which corresponds to a precise
range of frequency, where we can expect to observe the experimental disappearance
of the analyzed attractor. Below this interval, the branch practically does not exist,
although it appears in the theoretical predictions. Therefore, this analysis is able
to provide a satisfactory interpretation of the disturbances inevitably encountered
in the experimentation. Of course, the more accurate is the model, the more pre-
cise will be the dynamical integrity analysis in predicting the threshold of practical
disappearance.

Hence, Eq. (15) is able not only to predict the general outline of the frequency
sweeps, but also to provide reliable (and not rough) dynamical integrity predictions
of the experimental extent of each branch.

Note that, up to VAC = 4.5 V, the practical disappearance occurs within a very
small range of LIM. After this VAC value, the range gradually enlarges, both in the
non-resonant and in the resonant branch. Thus, the dynamical integrity analysis may
be used also as a valuable tool to denote the threshold of applicability of the model,
since is able to detect the voltage boundary after which the model slowly starts to
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Fig. 23 LIM frequency-electrodynamic voltage dynamical integrity charts for the practical disap-
pearance of a the resonant attractor and of b the non-resonant attractor

decrease its accuracy. In the present case, this threshold practically covers all the
range with available experimental data.

The schematic dynamical integrity chart in Fig. 24 summarizes the overall sce-
nario, namely these are the region where only one branch exists both in theory and
in practice (white); the region where only one branch exists in practice, whereas
the other one practically disappears (light grey); the region where both the branches
practically coexist (dark grey).

4 An Electrically Actuated Single-Walled Slacked Carbon
Nanotube

The complexity of the system’s nonlinear behavior is the topic of the third case-study.
Thanks to the inherent nonlinearities, even simple MEMS and NEMS devices may
exhibit very rich dynamics. As an example, we present a theoretical investigation of
the nonlinear response of a slacked carbon nanotube (CNT) when actuated by large
electrostatic and electrodynamic excitations. The coexistence of several competing
attractorswith different characteristics is observed, which leads to a considerable ver-
satility in the system’s dynamics. This is a realistic case with multiresponse behavior,
which may be desirable for many feasible applications.

We analyze the integrity profiles of each one of the principal attractors since they
offer valuable information to the designer about the practical range of actuality of
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Fig. 24 Schematic
dynamical integrity chart.
The white region represents
the parameter range where
only one branch
(non-resonant or resonant)
exists both in theory and in
practice. The light grey
region represents the range
where only one branch exists
in practice, whereas the other
one (expressed in brackets)
practically disappears. The
region where both the
branches practically coexist
is dark grey
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the CNT. Nevertheless, when the response becomes increasingly complex as in the
present system, restricting only to the analysis of the practical disappearance of the
attractors is typically not sufficient. In fact, to have a comprehensive outline of the
final response under realistic conditions, various dynamical integrity aspects need to
be considered, e.g., the robustness of the potential well, the final behavior after the
disappearance of an attractor, etc. In the following, we raise the need for focusing on
different dynamical integrity issues, although we refer to dedicated papers for their
detailed discussion.

In the literature, the complexity in a CNT is observed by Xu et al. (2017) and the
analysis of the response of a similar device under different complementary dynamical
integrity perspectives is developed by Ruzziconi et al. (2013e).

4.1 The Slacked CNT

The analyzed NEMS device consists of a very slender single-walled slacked CNT
electrically actuated, which is schematically represented in Fig. 25. The electrode is
placed directly underneath the CNT at a certain distance d. Both the electrostatic and
the electrodynamic actuations are taken into account, where VDC is the electrostatic
voltage and VACcos(�t) is the electrodynamic excitation, with voltage VAC and
frequency �. The nanotube is modeled as a fixed–fixed nanobeam, of length L and
a constant circular cross-section with radius R.

The slacked configuration, which simulates the imperfections possibly due to the
fabrication process, is expressed as y0(z) � y0sin2(π z/L), where b0 is the maximum
initial rise. The problem formulation is very similar to the one of a microbeam-based
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Fig. 25 Schematic of the
electrically actuated slacked
single-walled carbon
nanotube AC
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MEMSdevice.We briefly recall themain steps, since they are the starting point of the
present analysis. The dimensionless governing equation of the transverse deflection
of the CNT can be written as

v̈ + ξ v̇ + v′′′′ − α(v′′ − y′′
0 ) � γ Fe (16)

with

α � ka
∫ 1

0

(
1

2
(v′)2 − v′y′

0

)
dz (17)

and the electric force term Fe is expressed as (Ouakad and Younis 2011, 2012)

Fe � (VDC + VACcos(�t))2√
(1 − v − y0)(1 − v − y0 + 2R)

(
cosh−1

(
1 + 1−v−y0

R

))2
. (18)

The boundary conditions are

v(0, t) � 0, v(1, t) � 0, v′(0, t) � 0, v′(1, t) � 0. (19)

The level of slack and the geometry of the considered CNT are selected in order
to activate two stable configurations. In particular, we consider: L = 1750 nm, Rout

= 1 nm, Rin = 0.5 nm, d = 500 nm, Young modulus E = 1 TPa, mass density ρ =
1.3 g/cm3, and a slack level of 100 nm.

After applying theGalerkin technique and the Padé approximation, the final single
mode reduced-order model becomes

ẍ + 0.2237ẋ + 19272 × 106x − 2.2911 × 107x2 + 6.0539 × 107x3

� 10.7424 − 22.0783x + 2.8898x2 + 20.2295x3

(0.5574 − x)2
(VDC + VACcos(�t))2 (20)

where x(t) is the modal coordinate amplitude (Xu et al. 2017).
The system has an asymmetric double potential well, with escape direction on the

right. A zoom in correspondence of the wells is reported in Fig. 26. The asymmetry
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Fig. 26 a Double potential well and b phase portrait, at VDC = 10 V

is due to the presence of the electric excitation in only one side of the CNT. The well
at right is slightly wider and closer to the escape, whereas the well at left is smaller
and far from it.

The corresponding phase portrait illustrates the four physical equilibrium points,
namely the elliptic center xs1 =0.0018, the saddle xs2 =0.1217 related to themaximum
between the two wells, the elliptic center xs3 = 0.2553, and the hill-top saddle xs4
= 0.5492 (which exceeds the range shown in the figure). We can clearly observe
the small vibrations confined inside each single well surrounding each center, the
two homoclinic loops separating the small in-well dynamics from the large cross-
well oscillations spanning both the wells, and finally (not shown in the zoom) the
homoclinic orbit of the hill-top saddle, separating all the bounded motions from the
out-of-well escape. The natural frequency associated with xs1 is at� ∼� 1321, and the
natural frequency associated with xs3 is at � ∼� 1450. These two natural frequencies
are slightly different from each other. This is another consequence of the asymmetry
of the system.

4.2 Multiresponse Behavior

The main aspects of the CNT dynamics are theoretically explored, highlighting the
possibility of multiresponse behavior. We report the theoretical frequency response
curves at VDC = VAC = 10 V, Fig. 27. Several different attractors may arise. The
principal attractors oscillating in the neighborhood of the stable equilibrium xs1 (left
well) are in black line, the principal attractors oscillating in the neighborhood of the
stable equilibrium xs3 (right well) are in blue line, and the large cross-well dynamics
are in green line.

Focusing on the primary resonances, Fig. 27a, we can observe that attractors A1

(non-resonant) and A2 (resonant) in the left well and attractors B1 (non-resonant)
and B2 (resonant) in the right well coexist for a wide �-range. The non-resonant
branch disappears by saddle-node bifurcation (SN). The resonant one, instead, per-
forms a period-doubling cascade leading to chaotic motion and finally disappearing
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Fig. 27 Frequency response curves of a in-well attractors and b large cross-well oscillations, at
VDC = 10 V and VAC = 10 V. Attractors in the left well, in the right well and large cross-well
dynamics are respectively in black, blue, and green lines

by boundary crisis (BC); we can notice the first period-doubling, whereas the other
bifurcations affect a very small parameter range and for this reason are only sym-
bolically sketched in the figure. As anticipated in the preliminary investigations, the
two resonance zones are shifted a little, due to the asymmetry of the CNT.

We can see parametric resonance. Focusing on the oscillations in the left well
(black), this phenomenon occurs at � ∼� 880.6. Decreasing the frequency, the non-
resonant attractor A1 at primary resonance becomes the resonant branch A4 at para-
metric resonance. We can observe the presence of the non-resonant branch (A3) and
of the resonant one (A4). There is a tiny interval where the non-resonant and the res-
onant branch separate. The resonant branch immediately increases the amplitude of
its oscillations. The non-resonant branch, instead, continues performing very small
vibrations. The coexistence of the non-resonant and the resonant attractors endures
approximately all along�∼� [701.8; 880.6], which is a rather large�-range, although
smaller than the one involved at primary resonance. Only close to its disappearance,
the resonant branch rapidly undergoes period-doubling cascade and finally vanishes
by boundary crisis.

Superharmonics are clearly visible since the voltage excitation is elevated enough
to allow detecting them properly. Still investigating the left well dynamics (black),
we can see the ½ superharmonic, at � ∼� 660.5. The scenario is very similar to the
one at primary resonance. There are the non-resonant (A5) and the resonant branch
(A6), which previously was the non-resonant A3. As expected, the parameter range
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involved in the½ superharmonic is smaller than in the primary case, but the amplitude
of the resonant peak rises up to about the same oscillation amplitude.

The frequency response diagram plainly illustrates the ⅓⅓ superharmonic at �
∼� 440.3. Also in this case, bifurcations are very similar to the ones at primary
resonance. The range involved by the non-resonant (A7) and resonant (A8) attractors
is increasingly smaller, although their oscillations achieve elevated amplitudes.

Finally, the ¼ superharmonic at � ∼� 330.3 can be seen, whose dynamics are
analogous to the ones at primary resonance, except that the interval where the non-
resonant (A9) and resonant (A10) oscillations are confined is very narrow, although it
slightly continues behind the parameter values examined in the present paper.

All couples of resonant and non-resonant branches exhibit the characteristic bend-
ing toward lower frequencies. Although different resonant attractors belonging to the
same well are generated and some of these branches are considerably long (e.g., at
primary, parametric resonance and ½ resonance), we cannot find them simultane-
ously, i.e., unfortunately, the CNT under consideration offers no chance to have some
of the resonant attractors coexisting.

Similar behavior occurs in a neighborhood of the stable configuration xs1 (right
well), where in addition to the primary resonance with attractors B1 and B2, we can
clearly observe the parametric resonance with attractors B3 and B4, the ½ superhar-
monic with attractors B5 and B6, the ½ superharmonic with attractors B7 and B8,
and the ¼ superharmonic with attractors B9 and B10. Their peaks are slightly higher
than the ones in the left well. Small differences are observed with respect to the left
well dynamics, as a consequence of the asymmetry of the system. A discrepancy
arises in the resonant branch at ⅓⅓ superharmonic, which appears and/or disappears
by saddle-node bifurcation and not by boundary crisis. Another discrepancy occurs
in the resonant branches at ⅓⅓ and at ½ superharmonics, whose length is notably
longer than in the corresponding branches in the left well. Dissimilarity arises at ¼
superharmonic, which is only slightly perceived at this voltage excitation and it does
not rise up to elevated values, but its resonant peak remains well below the ones
exhibited at the other resonance cases.

In addition to the nonlinear aspects previously examined, we can observe the large
cross-well oscillations reported in Fig. 27b, namely C1, C2, and C3, which appear
and/or disappear by boundary crisis and increase their maximum amplitude up to
reach and exceed the range reported in thefigure andfinally undergoing dynamic pull-
in. Note that the present reduced-order model considers only one natural frequency
(since it has only one d.o.f.). However, other resonances can be activated, which
further increases the complexity of the system’s response.

In Fig. 28, LIM dynamical integrity profiles are reported to investigate the dis-
appearance of the in-well attractors, in order to understand which one of them may
be expected to effectively operate the device. We focus on a neighborhood of the ½
superharmonic resonances. Only one normalizing condition is adopted, which per-
mits comparing the robustness of all the attractors among them, namely,we normalize
each radius with the analogous radius drawn for B in the unforced dynamics.

The attractors on the left andon the rightwell share a similar profile, although some
discrepancies arise due to the slight asymmetry. The non-resonant branches A5 and
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Fig. 28 Dynamical integrity profiles of the principal in-well attractors, at VDC = 10 V and VAC =
10 V. Attractors in the left and right well are respectively in black and blue line

B5 have an elevated dynamical integrity up to a close vicinity of their corresponding
SN; the resonant branches A6 and B6, have an elevated integrity only appreciably
before their corresponding BC. Note that the profiles present various sharp indented
parts. Evident ones occur at� ∼� 760 in A6 and� ∼� 770 in B6, but other minor drops
arise all along the LIM curves. These are the effect of some minor attractors, which
successively appear and/or disappear. Although they exist only in small parameter
ranges, they are able to noticeably affect and reduce the robustness of the principal
branches.

In addition to the practical disappearance of the in-well attractors, other different
dynamical integrity aspects may be investigated, in order to have detailed informa-
tion of the expected behavior under realistic conditions. For example, analyzing the
robustness of each potential well allows detecting the parameter ranges where it
remains wide enough to tolerate disturbances without undergoing dynamic pull-in;
detecting the final behavior after the disappearance of an attractor is a key aspect
for practical purposes in view of different kinds of applications; etc. Thus, when the
scenario is rather complex, the combined use of different dynamical integrity charts
offers the possibility to achieve a deep insight about the expected dynamics under
realistic conditions, which is essential for design and applications. A similar analysis
has been developed for instance by Ruzziconi et al. (2013e).
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5 Conclusions

In the present chapter, three different case-studies of engineering application of
dynamical integrity concepts have been examined.

In the first case-study, the dynamical integrity analysis has been observed to pro-
vide valuable information for interpreting the experimental data and for predicting the
expected behavior under different experimental conditions. A capacitive accelerom-
eter has been investigated in a neighborhood of its fundamental natural frequency.
To take disturbances into account and explore the practical response under realistic
conditions, a dynamical integrity analysis has been performed. The definition of safe
basin and the measure of dynamical integrity have been selected in order to establish
a continuous parallelism between the dynamical integrity tools and the experimental
sweeping process. Each branch experimentally exists in the range where its dynam-
ical integrity is elevated; conversely, it practically disappears where its dynamical
integrity is not enough to sustain the experimental disturbances. All these results
have been collected in the dynamical integrity charts. The matching is well beyond
what expected, remarkably in the resonant branch. The integrity curves have been
observed to be able to detect properly and accurately the threshold which separates
the area of practical existence, where the attractor can safely operate the device, from
the area of practical disappearance, where the attractor becomes too much vulner-
able to disturbances and vanishes in practice, although it theoretically exists and is
stable. The practical range of existence of each branch is smaller, and sometimes
considerably smaller than the theoretical one.

In the second case-study, investigating a microbeam-based MEMS device elec-
trically actuated, attention has been focused on the importance of the dynamical
integrity analysis for detecting the parameter range of application of the considered
theoretical model. An identification process has been developed, where in addition
to the linear and nonlinear aspects of the system response, dynamical integrity con-
cepts have been taken into account. We have stressed that the dynamical integrity
study cannot prescind from a good classical modeling, since the more accurate is the
mechanical modeling, and the more precise is the dynamical integrity in predicting
the system’s response in experiments and practice.

In the third case-study, a slacked carbon nanotube has been considered, which
presents two stable static configurations. Focusing on the first symmetric natural
frequency, the system’s dynamical response has been analyzed. This is characterized
by a rich nonlinear behavior. To describe the complexity of the CNT under realistic
conditions, the dynamical integrity of the principal attractors has been examined and
the need of combining information from different dynamical integrity perspectives
has been highlighted.

We can conclude that, in the present chapter, starting from particular case-studies,
the issue of dynamical integrity investigations in a mechanical system has been
addressed and its use in the engineering design has been highlighted in order to
operate the structure according to the desired outcome. We have underlined the large
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applicability of this analysis both in MEMS and, more in general, in any mechanical
system.
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Nonlinear Dynamics, Safety, and Control
of Structures Liable to Interactive
Unstable Buckling

Paulo B. Gonçalves, Diego Orlando, Frederico M. A. Silva, Stefano Lenci
and Giuseppe Rega

Abstract The nonlinear dynamics of two archetypal structural systems exhibiting
interactive modal post-buckling behavior is addressed, the discrete Augusti’s model
and a reduced-order model of the axially loaded cylindrical shell. The uncoupled
models exhibit a stable post-buckling response. However, themodal interaction leads
to unstable post-buckling paths that entail a complex dynamic behavior and imperfec-
tion sensitivity, with a marked influence on the dynamic integrity and safety. Perfect
and imperfect Augusti’s models are investigated in terms of static buckling, linear
vibrations, nonlinear normal modes, local and global nonlinear response to harmonic
excitation, dynamic integrity, control of global bifurcations aimed at increasing the
load carrying capacity. Then, as an example of a continuous system exhibiting strong
modal coupling and interaction, a two-degree-of-freedom model of the thin-walled
cylindrical shell is investigated in terms of global behavior and dynamic integrity.
The influence of uncertainties on the nonlinear response and dynamic integrity is also
shortly addressed. The chapter shows how a judicious use of the tools of nonlinear
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dynamics sheds light on the actual safety of structural systems liable to unstable
buckling under static and dynamic loads.

Keywords Structural instability · Interactive buckling · Dynamic integrity
Control of global bifurcations · System safety and load carrying capacity

1 Introduction

Stability represents a fundamental research area in theoretical and appliedmechanics,
which must be fully understood to increase the load carrying capacity of structures
and to ensure their safety against collapse in the presence of external disturbances.
The theory of stability is of crucial importance in scientific fields as diverse as solid
mechanics, electronics, chemistry, cosmology, and ecology. Mathematically, the the-
ory of stability is what is referred to as the bifurcation analysis. Slender civil, space,
aerospace, nuclear, offshore, and naval structures have traditionally been designed
to work below their critical load, obtained usually through a linear stability analy-
sis, because any instability is normally identified as connected to failure or loss of
functionality. However, performing linearization in state space at the critical point of
the parameter space does not provide sufficient information to predict what kind of
behavior the systemmay exhibit under finite perturbations. In recent years, the simul-
taneous use of the theory of elastic stability and the theory of nonlinear dynamical
systems has provided more powerful tools to analyze the overall behavior of struc-
tural systems liable to buckling and quantify their integrity in a dynamic environment.
Also, the stability analysis of structures has received a new impetus due to the use
of multi-stable mechanisms, which have an impact on many high-tech applications
such as stretchable electronics, nanotube serpentines, snapping surfaces, foldable
and deployable structures, morphing structures, nano- and microstructures under
electromagnetic forces, as well as on sensors and flexible actuators and vibration
absorbers.

Some important references on the theory of elastic stability include Croll and
Walker (1972), Thompson andHunt (1973, 1984) andBazant andCedolin (1991). For
a good introduction on the basics of local bifurcation analysis, the reader is referred
to Guckenheimer and Holmes (1984), Wiggins (1990) and Kuznetsov (2004). For
an overview of the theory of nonlinear dynamical systems the reader is referred to
the works by Nayfeh and Mook (2008) and Thompson and Stewart (2002) while the
numerical aspects are treated in Seydel (1988), Doedel et al. (1991) and Nayfeh and
Balachandran (1995), among others.

The developments of the theory of elastic stability in the past century led to the
identification of several structures liable to unstable pitchfork or asymmetric bifur-
cation. Such systems display for load levels lower than the static buckling load more
than one equilibrium position and the stable pre-buckling position is sensitive to
imperfections and dynamic disturbances which may lead to escape from the safe
pre-buckling potential well. The design of such systems is one of the main con-
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cerns of a structural engineer. A particularly dangerous case is when the structural
system displays coincident or nearly coincident buckling loads and the interaction
of different stable buckling modes leads to unstable coupled post-buckling branches
(Croll andWalker 1972; Thompson andHunt 1973, 1984; Bazant and Cedolin 1991).
Continuous structures displaying coincident or nearly coincident buckling loads are,
among others, plates, shells, thin-walled beams, and some frame structures. A par-
ticularly notorious case is the cylindrical shell under axial compression, which, as
shown by Koiter (Van der Heijden 2008), may display for certain geometries an
infinite number of coincident buckling loads. In such cases, the pre-buckling safe
solution may be surrounded by several saddles, leading to several local and global
bifurcations and, consequently, a complex topology of the phase space.

Simple phenomenological buckling models made up of rigid links and elastic
springs have served to illustrate the most important phenomena in the study of elastic
buckling. Some of these models are very useful for explaining or understanding the
different types of coupled instabilities. Gioncu (1994) presents a general report on the
theory of coupled instabilities in the light of extensive developments in the previous
century containing over 230 papers. He reviews the principal aspects, phenomena,
theories, and methods as well as applications to structural elements and structures.
Among these phenomenological models, the well-known discrete two-degree-of-
freedom Augusti’s model (Augusti 1964; Bazant and Cedolin 1991; Raftoyiannis
and Kounadis 2000; Orlando et al. 2011a, b) has become the archetypal model of
interactive unstable buckling. Other simplified models displaying the same behavior
are found in the literature (Thompson and Hunt 1984; Hunt et al. 1979; Jansen
1977; Sophianopoulos 2007; Thompson and Gaspar 1977; Gioncu 1994; Orlando
et al. 2013a, b). Recently, Dubina and Ungureanu (2014) published a review paper
summarizing severalmode interactionproblems,with an emphasis on the relationship
between the generalized imperfection and the erosion of theoretical buckling strength
of a member undergoing local and global buckling mode interaction.

Here, Augusti´s model is used to understand the influence of interactive buckling
and coupled instabilities on the structures’ safety and dynamic integrity. Initially, the
stability analysis of the perfect models is conducted, including the identification of
all pre- and post-critical equilibrium paths, and the effect of imperfections on the
load carrying capacity of the structure and stability of the various equilibrium paths.
The purpose of this analysis is to understand how the various unstable post-critical
solutions and imperfections influence the geometry of the potential energy surface,
the contour of the pre-buckling potential well, and the integrity of the structure under
the inevitable external disturbances. Then, the behavior of the models in free vibra-
tion is investigated, including the identification of the natural frequencies, nonlinear
vibration modes, and possible internal resonances. To understand the dynamics of
the models, the geometry of the safe region surrounding the pre-buckling equilib-
rium position and the invariant manifolds of saddle points that define this region are
obtained using the tools ofHamiltonianmechanics. Also, as part of the free vibrations
analysis, all stable and unstable nonlinear vibration modes and their frequency–am-
plitude relations are obtained. These nonlinear stable and unstable modes, which
arise due to modal coupling and the symmetries of the models, govern and explain
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the dynamics of the model under forced vibration. Based on these results, we study
the behavior of the models subjected to a base excitation through a systematic study
of the local and global bifurcations, and the robustness of stable solutions through
the evolution and stratification of the basins of attraction and their dynamic integrity
measures. Finally, we study how to increase the safety of the structure through the
control of global homoclinic and heteroclinic bifurcations. This chapter concludes
with a brief analysis of a reduced-order model of an axially excited cylindrical shell,
which is one of the most complex examples of a continuous slender structure exhibit-
ing strongmodal coupling and interaction, and with some comments on the influence
of uncertainties and noise on the dynamic integrity.

This chapter is organized as follows. In Sect. 2, the governing equations describ-
ing the dynamics of Augusti’s model are obtained, and the main dynamical issues
are discussed. The buckling and post-buckling analysis of the perfect and imper-
fect model is studied in Sect. 3, while in Sect. 4 the linear vibration analysis and
the nonlinear normal modes are obtained and the influence of symmetries on the
static and dynamic analysis is highlighted. Section 4 shows the forced response of
Augusti’s model under a harmonic base excitation, including a detailed bifurcation
analysis, the stability boundaries in force control space and the evolution of the
basins of attraction, including the erosion profiles. Based on these results, Sect. 4
also presents the integrity measures, which report a measure of the system safety
versus the increasing load, and presents a control technique developed to increase
these integritymeasures. A single-degree-of-freedom (s.d.o.f.) model with its Hamil-
tonian and perturbed dynamics, which are particularly useful in showing the control
performances, is described together with the formulation and analysis of the control
method. In Sect. 7, a consistent reduced-order model for the analysis of cylindrical
shells under axial load is deduced and used to study the global behavior and dynamic
integrity of the shell. Section 8 discusses briefly the influence of uncertainties on
the nonlinear response and dynamic integrity measures. The chapter ends with some
conclusions (Sect. 9).

2 A Discrete Archetypal System for Interactive Unstable
Buckling

The authors have in recent years conducted an extensive analysis on the nonlinear
dynamics of some archetypal systems for interactive unstable buckling, including
Augusti’s model and a simplified model of a guyed mast proposed by Thompson
and co-workers (Thompson and Hunt 1984). Orlando et al. (2011a, b) investigated in
detail the nonlinear dynamics and imperfection sensitivity of Augusti’s model with
emphasis on the influence ofmodal coupling on the stability boundaries, bifurcations,
and basins evolution due to variation of system parameters, leading to the determi-
nation of erosion profiles and integrity measures which enlightened the loss of safety
of the structure due to penetration of eroding fractal tongues into the safe basin.
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Later, Orlando et al. (2013a) investigated, using Augusti’s model and the simplified
model of a guyed mast, how system symmetries, the symmetry-breaking effect of
initial geometric imperfections and energy level influence the number and stability
of the nonlinear normal modes and the existence of multimode solutions in struc-
tural systems liable to unstable buckling. Lenci et al. (2012a, b) applied a method
for controlling the global nonlinear dynamics of Augusti’s model and the inverted
guyed pendulum to increase the safety of these structures in a dynamic environment.
A detailed analysis of the inverted guyed pendulum can be found in Orlando et al.
(2013b).

Augusti’s model, as shown in Fig. 1a, consists of an inverted spatial pendulum
composed of a slender, rigid (but massless) bar of length l, with a tip-mass m in
a gravitational field of constant acceleration g, pinned at the base and stabilized
laterally by two rotational springs with constant stiffness k1 and k2 that are initially
located in two perpendicular planes and rotate with the bar. Figure 1b shows the
deformed configuration of the geometrically perfect system and the variables used in
the derivation of the equations of motion. Let ϕi be the angles between the pendulum
rod and the three Cartesian coordinate axes, as shown in Fig. 1b, then the cosines
of ϕi must obey the geometrical constraint cos2 ϕ1+cos2 ϕ2 +cos2 ϕ3 =1. Thus, the
projection of the pendulum length onto the z-axis is�� l cosϕ3 = l(1 – cos2 ϕ1 – cos2

ϕ2)1/2. The angles θ i � (π /2) – ϕi, (i �1, 2), are chosen as the two-degree-of-freedom
of the inverted pendulum. They measure the spring deformation in Augusti’s model.

For the geometrically imperfect column, the initial configuration is defined by the
angles φ andψ shown in Fig. 1c, where the two angles ϕi0 that define the rod position
in the Cartesian reference frame are also reported. The deformed configuration of the
imperfect model is illustrated in Fig. 1d. The angle φ measures the initial inclination
of the unloaded bar (a small initial geometric imperfection) and the angle ψ denotes
the direction of the projected imperfect bar onto the x × y plane. Hence, the angles φi

are the magnitudes of the geometric imperfection in the θ i directions. The angles γ 1

and γ 2 are, respectively, the deformations of the springs in the θ1 and θ2 directions
(θ1=φ1 +γ 1, θ2=φ2 +γ 2). These angular quantities are related by

l cosϕ10 � lsinφ1 cosψ, φ1 � (π/2) − ϕ10 (1a)

l cosϕ20 � lsinφ2 sinψ, φ2 � (π/2) − ϕ20. (1b)

When considering the forced dynamics, the system is subjected to a harmonic
base excitation, Db(t), acting at an angle ϕ with respect to the x-axis (Fig. 1a). Db(t)
is decomposed into two orthogonal components, ub(t)�Fbcosϕsin(ωet) in the x-
direction and vb(t)�Fbsinϕsin(ωet) in the y-direction, where Fb is the excitation
base displacement and ωe the excitation frequency.

The kinetic energy is written in terms of θ i as (Orlando et al. 2013a)
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Fig. 1 Augusti’s two-degree-of-freedom model. Perfect system: a undeformed and b deformed
configuration. Imperfect system: c undeformed and d deformed configuration

T � 1

2
m
(
(l θ̇1 cos θ1 + u̇b)

2 + (l θ̇2 cos θ2 + v̇b)
2

+
l2
(
θ̇1 cos θ1sinθ1 + θ̇2 cos θ2sinθ2

)2

cos2 θ1 + cos2 θ2 − 1

)

, (2)

where the dot indicates differentiation with respect to time t.
The total potential energy of the imperfect system is given by


 � U + V � 1

2
k1(θ1 − φ1)

2 +
1

2
k2(θ2 − φ2)

2

− Pl

(√
1 − sin2φ1 − sin2φ2 −

√
1 − sin2θ1 − sin2θ2

)
, (3)
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where U and V are the strain energy and the potential energy of the applied load P
�mg, respectively.

In order to consider viscous damping with coefficients Ci in the equations of
motion, the work of the nonconservative forces is added to the energy functional as

E � 1

2
C1θ̇

2
1 +

1

2
C2θ̇

2
2 . (4)

First, the nonlinear equilibrium equations of the imperfect system are obtained
by the use of the stationary energy principle

∂(
)

∂θi
� 0; i � 1, 2.

The stable static equilibrium configuration θ is within the safe pre-buckling poten-
tial well corresponding to a given load level and imperfection and the nonlinear
equilibrium paths are obtained by solving the equilibrium equations by the New-
ton–Raphson method together with continuation techniques.

Then a dynamic perturbation θ id is added to the static displacement field:

θi (t) � θis + θid (t). (6)

The reference for the dynamic response is the static deformed configuration,
thus the variation of the total potential energy of the system between the static and
perturbed configurations reads 
� (Ut – Us)+ (V t – Vs) and the Lagrange function
is defined as

L
(
θid , θ̇id

) � T − [(Ut − Us) + (Vt − Vs)]. (7)

Finally, the equations of undamped motion of the perturbed imperfect pre-loaded
system are obtained

d

dt

∂(T )

∂θ̇id
− ∂(T )

∂θid
+

∂
(∏)

∂θid
� 0. (8)

Through this procedure, the static configuration becomes the origin of the phase
space. For the perfect system, the reference static configuration reduces to the trivial
solution, θ is �0. The natural frequencies ω0i of the imperfect pre-loaded system and
the corresponding vibrationmode shapes�i are obtained by linearizing the equations
of motion and solving the resulting eigenvalue problem. The explicit equations of
motion for the Augusti’s model are given in Orlando et al. (2011b).

For the conservative model, the Hamiltonian, H, is the total energy of the system,
that is, H �T +
 is constant.
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3 Static Buckling Analysis

For the perfect Augusti’s model, the following homogeneous system of linearized
equilibrium equations is obtained:

[k1 − Pl]θ1 � 0; [k2 − Pl]θ2 � 0; (9)

The linearized equations of motion have no coupling terms and the perfect system
has two bifurcation loads given byP1 �k1/l andP2 �k2/l. The respective orthogonal
eigenvectors are given by {1, 0}T and {0, 1}T . The buckling behavior is a function
of the relative stiffness of the springs, α �k1/k2. For α �1, P1 �P2 �k/l and a
degenerate eigenvalue problem is obtained where any vector can be an eigenvector
of the system. Thus, for α ≈ 1 the two bifurcation loads are nearly equal leading
to possible modal interaction. The influence of the relative stiffness of the springs
on the static buckling behavior is now analyzed. Figure 2a shows the post-buckling
paths of the perfect models with α �1, where λ �P/Pcr with Pcr �k/l, thus λcr �1.
The fundamental path is stable up to the static critical load. Four post-buckling paths
are identified: two ascending unstable paths, which correspond to the two uncoupled
solutions (U2 for θ1 �0 and U1 for θ2 �0) and the two coupled descending unstable
orthogonal paths at 45° (C1 for θ1 �θ2 and C2 for θ1 �–θ2). These four post-critical
paths are associated with the four planes of symmetry of the structural system. The
uncoupled system with one spring in the θ1 plane has been traditionally used as an
example of stable post-buckling behavior (Croll and Walker 1972). The coupling
of two otherwise stable modes leads to the unstable solutions shown in Fig. 2a.
Figure 2b shows the potential energy surface for a static load level λ �0.9<λcr as
well as the isoenergetic curves on the θ1 × θ2 plane. For any value of λ between 0 and
1, there is a minimum corresponding to the stable pre-buckling solution, surrounded
by four saddles at the same energy level. These saddles correspond to the unstable
post-buckling configurations along the descending unstable paths. As λ increases, the
safe basin shrinks and disappears at λ �λcr (Gonçalves and Santee 2008; Gonçalves
et al. 2011; Silva and Gonçalves 2015). Figure 3 shows two suitable projections of
the stable and unstable manifolds of the saddles. Two pairs of heteroclinic orbits,
each pair connecting two opposite saddles (S1–S3 and S2–S4) at±45° are identified,
each manifold contained within a plane of symmetry. These manifolds are obtained
by integrating the nonlinear equations of motion of the unforced undamped system,
with initial conditions in the vicinity of the relevant saddles (Lenci et al. 2012a, b).

Figure 2c and 2d shows the fundamental solution and the post-critical paths for,
respectively, α �1.05 and α �1.50 (k1 >k2). The fundamental equilibrium path (θ1

�θ2 �0) and the initial uncoupled post-critical path associated with k2 are stable.
The other post-critical paths are unstable. For α �� 1, the coupled unstable descend-
ing paths emerge from a secondary subcritical bifurcation along the post-critical path
associated with k2. This secondary bifurcation moves away from the primary bifur-
cation as α increases and, for sufficiently large values of α, the system behaves as
a system of one-degree-of-freedom with a stable symmetric bifurcation. Keeping k2
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Fig. 2 Fundamental and post-buckling equilibrium paths for three values of the stiffness parameter.
In (b), S: Saddles, PMi: Stable position corresponding to a local minimum

constant and increasing k1, α increases and the bifurcation load associated with k1
increases while the critical load associated with k2 remains constant, decreasing the
possibility of modal interaction. For α �1.05 and α �1.50, the system also displays
the four saddle points surrounding the stable pre-buckling position for load levels
lower than the critical load. However, they gradually move away from the stable
equilibrium position as α increases, thereby increasing the safe region.

The results in Fig. 2 illustrate the main features of interactive buckling: new cou-
pled equilibriumpaths appear, coexistingwith those of the uncoupled systems and the
otherwise stable ascending equilibrium paths become unstable. These features have,
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Fig. 3 Two projections of the stable and unstable manifolds of the saddles that define the boundary
of the safe pre-buckling region. λ �0.9

as shown here, a huge influence on the topology of the potential energy surface and,
consequently, on the ensuing nonlinear dynamics. The results also show that a sim-
plified modeling that does not consider the possible modal interactions may lead to
the unsafe design and catastrophic failure of the structural system. So, possiblemodal
interaction must be investigated whenever equal or nearly equal bifurcation loads are
obtained from the linearized eigenvalue buckling problem. It is also observed that
symmetries, often found in structural systems, are closely connected with interac-
tive buckling (Jensen et al. 1999; Orlando et al. 2013a). Thereafter, the results are
concentrated on the results for α�1, where the influence of modal interaction can
be better observed and discussed.

It is well known that small imperfections influence the response of structural
systems liable to buckling, in particular, systems exhibiting unstable symmetric or
asymmetric bifurcation (Croll and Walker 1972; Thompson and Hunt 1984; Bazant
and Cedolin 1991), where the load carrying capacity is eroded by increasing imper-
fections (Gonçalves and Santee 2008). In such cases, the structure is said to be
imperfection sensitive. The nonlinear equilibrium paths for the imperfect Augusti’s
model with α �1, ψ �0°, and φ �1° are illustrated in Fig. 4a. The point of multi-
ple bifurcations in Fig. 2a is destroyed by the imperfection and the imperfect system
under increasing static loading displays a stable nonlinear equilibrium path contained
in the x × y plane (θ1 plane), sinceψ �0°, which becomes unstable due to a subcrit-
ical pitchfork bifurcation. This solution is the same as that of the imperfect s.d.o.f.
systemwith stable post-critical behavior up to the bifurcation point where it becomes
unstable. The critical load is lower than that of the perfect system, λcr �0.955698,
as expected for an imperfection-sensitive system. Four additional unstable coupled
paths and three secondary bifurcations corresponding to the perturbed unstable post-
buckling paths of Fig. 2a are observed. These paths converge to those of the perfect
system as the imperfection magnitude goes to zero. The safe region is defined by
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Fig. 4 Nonlinear equilibrium paths for the imperfect model with φ �1°

the saddles S1 and S4 at the same energy level (H �0.006189), Fig. 5b, associated
with the bifurcated unstable solution (saddles S2 and S3 are at a higher energy level,
H �0.02402). Each of the saddles S1 and S4 is associated with a homoclinic orbit,
arising from the perturbed heteroclinic orbits shown in Fig. 5b. However, they no
longer are in a plane manifold, as illustrated in the two projections shown in Fig. 6b.

Now an imperfection in the direction of one of the diagonal symmetry planes,
specifically ψ �45° and φ �1°, is considered. Figure 4c shows the response of the
imperfect system under static loading. In this case, the nonlinear stable path loses
stability at a limit point and the maximum load is even lower than in the previous
imperfection case, λcr �0.928767. Again, several unstable complementary paths are
observed. In the present case, the safe region is bounded by the saddle at the lowest
energy level (saddle S1 at H �0.003239), as shown in Fig. 5d, which is associated
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Fig. 5 Curves of equal potential energy for λ �0.9. Perfect and imperfect system

with a homoclinic orbit contained in a plane at 45°, Fig. 6c. Saddles S2 and S4 are
at the same energy level, H �0.014628, and saddle S3 is at H �0.028297.

Finally, Figs. 4b and 5c show the response for an imperfection defined by ψ �
15° and φ �1°, where the fundamental path, as in Fig. 4b, loses its stability at a
limit point. However, the unstable complementary paths are different from those in
Fig. 4c, leading to a different energy landscape.

The conservative safe basin of attraction of the perfect system, Fig. 7a, is clearly
delimited by the four saddle points. The presence of several symmetries is observed
in this region, reflecting those of the physical model. The geometric imperfections
cause various changes in the response. In addition to the symmetry-breaking effects
on the topology of the energy landscape, which depends on the type andmagnitude of
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Fig. 6 Manifolds for λ �0.9 and ωp �1.0/s. Perfect and imperfect system

Fig. 7 Three-dimensional sections of safe pre-buckling region for λ �0.9 and ωp �1.0/s. Perfect
and imperfect system

the imperfection, the safe region decreases considerably, significantly reducing the
set of initial conditions that lead the system to oscillate around the stable fixed point
of the pre-critical solution. Another striking effect is the change in the connections
between the saddle points. Whenψ �0°, 90°, 180°, 270° and φ �� 0°, the safe region
is bounded by two saddle points, Fig. 7b. When ψ �� 0°, 90°, 180°, 270° and φ �� 0°
(see Fig. 7c for ψ �45°) the safe region is bounded by one saddle point.

These results show how the relative stiffness and initial geometric imperfections
change thepotential energy landscape, and, therefore, influencingmarkedly the vibra-
tion characteristics and nonlinear dynamics of the model, as it will be shown in the
upcoming sections.

4 Linear Vibration Analysis and Nonlinear Normal Modes

Symmetries that lead to interactive buckling can also generate multiple nonlinear
vibrationmodes associatedwith the same natural frequency. For the perfectAugusti’s
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model, the following homogeneous system of linearized equations of motion is
obtained:

[
1 0
0 1

]{
θ̈1

θ̈2

}

+ (1 − λ)
ω2

p

λ

[
1 0
0 1

]{
θ1

θ2

}

�
{
0
0

}
. (10)

The linearized equations of motion have no coupling terms and the perfect system
has two equal natural frequencies, ω1 �ω2 �ωp [(1/λ) – 1]1/2, with ωp � (g/l)1/2,
leading to possible 1:1 internal resonance. Hence, a degenerate eigenvalue problem
is again obtained and any pair of linearly independent vectors in the space defined by
θ i can be chosen as eigenvectors (Jordan and Smith 2007). Thus, the linear system
is equivalent to two uncoupled oscillators. The coupling is only through the nonlin-
ear terms in the equations of motion. Thus, the kind of possibly coupled nonlinear
response depends on the initial conditions and imperfections and on the energy level.
However, the system symmetries and internal resonance may lead to a number of
nonlinear normal modes (NNMs) greater than the number of degrees of freedom of
the discrete model.

NNMs can be regarded as a generalization of linear normal modes. The initial
concept was introduced by Rosenberg (1960, 1966), who defined a NNM of a dis-
crete, conservative, nonlinear system as a synchronous periodic oscillation where
all material points of the system reach their extreme values or pass through zero
simultaneously. In 1991, Shaw and Pierre (1991) introduced a more general concept
of NNMs. They define NNMs as motions on invariant manifolds which are tangent
to, and of the same dimension as, the linear eigenspaces in the system phase space.
A feature of NNMs that has no counterpart in the linear theory is that their number
may exceed the number of degrees of freedom (superabundance of modes). Due to
mode bifurcations, not all NNMs can be regarded as a nonlinear continuation of
the underlying linear modes, and these bifurcating NNMs are essentially nonlinear
with no linear counterparts. Modes generated through internal resonances are one
example. Another example corresponds to the generation of additional fundamental
NNMs due to symmetry (Peeters et al. 2009; Vakakis and Rand 1992). These two
features are found in Augusti’s model. These modes may be stable or unstable, while
in the linear theory they are neutrally stable. Several methods are proposed in the
literature for calculating NNMs based on perturbation expansions such as multiple
scale analysis (Nayfeh and Nayfeh 1994; Nayfeh et al. 1996) and invariant manifold
method (Shaw and Pierre 1991; Boivin et al. 1995; Pesheck et al. 2001; Gavassoni
et al. 2014, 2015). They provide analytical expressions of NNMs, but are limited to
weak nonlinearities or small amplitudes.

For low-dimensional systems, the application of Poincaré maps is an efficient
tool to determine numerically the existence of NNMs. For the conservative model,
fixing the energy level of the Hamiltonian H �T +
, one can restrict the flow of
the dynamical system to a three-dimensional isoenergetic surface. This is achieved
by setting H �h, where h is the adopted energy level. If the three-dimensional
isoenergetic region is cut by a 2D plane and the flow is transverse to this plane
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(Wiggins 1990), the resulting cross-section � is two-dimensional and defines the
Poincaré map.

Techniques for obtaining the Poincaré maps of two-dimensional systems are pre-
sented in Month and Rand (1980), Orlando (2010). Using this technique, one can
determine the overall flow of the dynamical system sufficiently close to each mode,
and thus obtain a complete and detailed description of nonlinear modes and their
stability. Stationary modes correspond to stationary points in the Poincaré section.
They are stable if they are centers (elliptical fixed points) and unstable if they are
saddles (hyperbolic points). For an energy level higher than that of one of the saddles
that define the boundary of the safe pre-bucklingwell,H �hsd , no stable solution and
consequently no stable mode can be found. Thus, this energy level corresponding to
the maximum equipotential surface is used as a reference upper bound in the present
analysis.

Figure 8 shows two Poincaré sections for 50% of hsd for λ �0.9 and ωp �
1.0/s. These sections show the existence of several stable and unstable nonlinear
modes. The centers Pij (point i of section j) shown in Fig. 8 are related to four
nonlinear modes. Their modal lines, which correspond to the motion of the top mass
in the configuration space, are shown in Fig. 9. In nonlinear systems, the modal
lines can be either a straight line (similar mode) or a curve (non-similar mode). Each
mode is contained within one of the four symmetry planes of the perfect structure
which are also the two-dimensional invariant manifolds of these modes. A number
of similar modes greater than the number of d.o.f. are due to the simultaneous effect
of symmetry and internal resonance. The modes are characterized as follows: M1
(point P02) by θ2 �0, M2 (point P01) by θ1 �0, M3 (points P11 and P12) by θ1 �
θ2 �u/(2)1/2 (in-phase mode), and M4 (points P21 and P22) by θ1 �–θ2 �u/(2)1/2

(out-of-phase mode), see Figs. 8 and 9a. Hence, modes M1 and M2 correspond to
uncoupled modes, while modesM3 andM4 correspond to coupled stationary modes.
Figure 10a shows the frequency–amplitude relation of mode M1 which is analogous
to that of mode M2. These two modes display a hardening behavior. As shown in
Figs. 2b or 5a, the potential energy along the axes is a one well potential (the energy
increases with θ ). The potential energy profile in these planes has a positive curvature
with increasing stiffness (declivity), as observed in Fig. 2b. Figure 10b shows the
frequency–amplitude relation for mode M3, which is similar to mode M4 in the
perpendicular direction. In this case, the modes show a strong softening behavior
and their stability is bounded by the two heteroclinic orbits.

When adding a small geometric imperfection, it will act as a detuning parameter
and the singularity disappears leading to two different (but close) natural frequen-
cies and two linearly independent orthogonal eigenvectors (linear normal modes).
Figure 9b–d show the modal lines for φ �1° and three values of ψ for two given
energy levels, where one similar mode M1 (point P02) and one non-similar mode
M2 (point P01) are identified. They result from the perturbation of modes M1 and
M2 in Fig. 9a due to the small geometric imperfection. Mode M1 (θ2 �0) of the
perfect system is unaffected since the imperfection direction is just along the symme-
try plane θ2 �0, thus preserving the symmetry of the structure in the perpendicular
direction (i.e., along θ2); in contrast, the similar mode M2 (θ1 �0) of the perfect
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Fig. 8 Poincaré sections for increasing energy level. λ �0.9, ωp �1.0/s, and 50% hsd

system becomes non-similar due to the symmetry-breaking effect of the imperfec-
tion in the perpendicular direction (i.e., along θ1). The imperfection also destroys
the internal resonance and two distinct natural frequencies are now obtained, ω1 �
0.311 (non-similar mode) andω2 �0.353 (similarmode). However, they remain very
close, due to the inherent symmetry of the original system.

Now consider an imperfection in the direction of one of the diagonal symmetry
planes, specifically ψ �45° and φ �1° (direction of the mode M3 of the perfect
system), Fig. 9a. For a given energy level (50% hsd), two modes (one similar M3
and one non-similar M4) are detected, Fig. 9c. As in the previous imperfection case,
they emanate from the modes M3 and M4 of the perfect system, Fig. 9a. For this
imperfection case, the nearly commensurate natural frequencies and linear modes
are: ω1 �0.302, {1, 1}T (similar mode) and ω2 �0.361, {1, –1}T (non-similar
mode). Now general imperfections that break all symmetries of the original system
are considered. Let us consider an imperfection defined by ψ �10° and φ �1°,
Fig. 9d.

By varying the values ofψ , it is observed that for general imperfections no similar
mode can be found, since all symmetries are lost. In general, two non-similar modes
emanating from the two independent linear modes are observed.

Figure 11a shows for φ �1° andψ �0° the bifurcation diagram for the nonlinear
modeP01 as a function of the energy level. To illustrate the twoobserved bifurcations,
Fig. 11b–d show the Poincaré sections for three energy levels. At h �50% hsd a
pitchfork bifurcation of the nonlinear mode is perceived, where the original stable
mode (P01) becomes unstable originating two new stable modes (P11 and P21). At
h �85.5%, hsd a period doubling bifurcation of each of the stable modes P11 and
P21 is perceived, thus increasing the number of NNMs and the complexity of the
system dynamics.
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Fig. 9 Modal lines for different imperfections at appropriate energy levels. φ �1°, λ �0.9, and
ωp �1.0/s

5 Nonlinear Dynamic Analysis of the Forced System

Now the behavior of Augusti’s model under harmonic base excitation with dimen-
sionless frequency ��ωe/ωp is investigated in order to understand the influence of
the interactive buckling, symmetries and nonlinear normal modes on the nonlinear
dynamics, bifurcations, and instabilities of the system.

First the importance of the multiplicity of NNMs and their nonlinear frequen-
cy–amplitude characteristics as to the behavior of the structure under external forcing
is investigated. Figure 12a shows for selected values of the forcing direction ϕ, F
�0.02, λ �0.9, and ξ 1 � ξ 2 �0.01 (modal damping), the response of the perfect
Augusti’s model. For ϕ �0°, the resonance curve is governed by the similar mode
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Fig. 10 Projection of frequency–amplitude relation for the modes M1, M2, M3, and M4. λ �0.9,
ωp �1.0/s and ω1 �ω2 �1/3

M1, Fig. 9a, which, as shown in Fig. 10a, displays a hardening behavior. On the other
hand, for ϕ �45°, the resonance curve is governed by the similar mode M3, Fig. 9a,
which, as shown in Fig. 10b, displays a strong softening behavior. In both cases, the
forced response can be described by the s.d.o.f. reduced-order model associated with
the specific NNM, that is, at any excitation frequency the dynamics of the original
system is captured by the reduced-order model if the initial conditions are confined
to the specific phase-plane (invariant manifold). For any value of ϕ different from
those that define the four symmetry planes, both nonlinearmodes influence the forced
response which is necessarily coupled. This can be clearly observed in the results
for ϕ �30° in Fig. 12a, where the resonance curve displays two peaks governed by
the two contributing nonlinear modes.

Figure 12b shows the results for the imperfect Augusti’s model considering ψ

�45°, F �0.01, φ �1°, λ �0.9, and ξ 1 � ξ 2 �0.01. The resonance curves for
selected values of the forcing direction ϕ show how the two nonlinear modes shown
in Fig. 12b, in particular, the softening mode associated with the coupled response,
influence their resonance curves.

These results show that the concept of NNM can be used to understand and model
nonlinear dynamic phenomena that might have no counterparts in linear theory.
In particular, the occurrence of superabundant modes, generated by the inherent
symmetries of the structure and by bifurcations, leads to the existence of extra-peaks
in the frequency response function, possibly associated to new phenomena, such as
unexpected resonances, localization, and energy transfer (Vakakis et al. 1996, 2008).

Now the influence of modal interaction on the dynamic buckling (escape from
the safe potential well) is analyzed. The escape load, Fesc, corresponds to escape
of the response from the pre-buckling potential well in a slowly evolving system,
which occurs upon the total annihilation of all in-well basins of attraction. In order
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Fig. 11 a Bifurcation diagram of the nonlinear mode M2 as a function of the energy level. b–d
Poincaré sections for increasing energy level. ψ �0°, φ �1°, λ �0.9, and ωp �1.0/s

to understand the influence of modal coupling, the solutions using the coupled and
uncoupled models are compared. First, the behavior of the perfect system with a
forcing direction ϕ �0° is considered. Figure 13 shows the bifurcation diagrams for
ϕ �0° and ��1/3 having as control parameter the forcing magnitude F. Two cases
are considered: in Fig. 13a the uncoupled case, when perturbations only in θ1 and
dθ1/dt are considered and only these coordinates are excited, and (b) the coupled
case, when very small perturbations in θ2 and dθ2/dt are also considered after each
load step (θ2 �dθ2/dt �0.001), bringing about the coupling of the two modes.
Although both diagrams display the same bifurcation sequence, leading to escape
from the safe well, for even very small values of θ2 and dθ2/dt, which entail coupling
of the two modes, a drastic reduction in the escape load is observed, corroborating
the importance of modal interaction in Augusti’s model (and similar problems).
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Fig. 12 Resonance curves—maximum vibration amplitude versus excitation frequency. Continu-
ous line: stable, dashed line: unstable. λ �0.9 and ξ1 � ξ2 �0.01

Fig. 13 Bifurcation diagrams for ϕ �0° and ��1/3. Coupled and uncoupled cases. PS: super-
critical pitchfork bifurcation. H: Hopf bifurcation. E: escape

Figure 14 shows the basin of attraction of the bounded solution of the coupled and
uncoupled system in the θ1 × dθ1/dt plane for a forcing magnitude F �0.1. The
black region corresponds to initial conditions that lead to safemotions within the pre-
buckling well while white corresponds to solutions that diverge to infinity. The safe,
continuous non-fractal basin of attraction of the uncoupled system (Fig. 14) is still
relatively large since the consideredF �0.1 value is well below the escape threshold.
In contrast, for the coupled system, the basin cross-section shows a drastic reduction
of the safe basin area, since the forcing magnitude is nearer to the escape load. Thus,
the modal interaction leads to a drastic reduction of the dynamic integrity of the
system, corroborating the importance of the modal interaction between the buckling
modes on its nonlinear dynamics.

By mapping the escape load through a sufficiently large number of bifurcation
diagrams obtained by increasing slowly the forcing amplitude while holding the
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Fig. 14 Comparison of the basin of attraction of the coupled and uncoupled cases for ϕ �0°, F �
0.1, and ��1/3

frequency constant in a forcing frequencies range which includes the fundamental
parametric resonances (ωe �ωi) of the twomodes and their principal, order 1/2 (ωe �
2ωi) or 1/3 ((ωe �3ωi) subharmonic, parametric resonances, the stability boundaries
in force control space (load magnitude vs. forcing frequency) are obtained. Figure 15
shows stability boundaries for the forcing direction ϕ �0°, considering the coupled
and uncoupled cases. For the uncoupled case, the lowest values of the escape load
occur in the neighborhood of the principal resonances (��2/3 and��1) of the two
coinciding modes, as expected in a condition of parametric excitation. In contrast,
quite high Fesc values do occur in the region of fundamental resonance (��1/3).
But for even very small values of θ2 and dθ2/dt, which entail coupling of the two
modes, a drastic reduction in the escape load is observed in the latter region. In
fact, there is a marked difference between the relevant stability boundaries in the
two cases, an overall reduction of the escape load in the whole excitation frequency
range here analyzed is observed for the coupled case. The decrease in the escape
load is followed by a significant decrease in the safe non-fractal area of the basin
of attraction, as illustrated in Fig. 14b. These results show that to overlook essential
interactions in structural modeling may lead to an unsafe design with unexpected
and even dangerous consequences.

Figure 16 shows the stability boundaries for different values of the forcing direc-
tion ϕ. As observed, the forcing direction has a strong influence on the escape load
due to the relative influence of the NNMs on the resonant behavior. Two different
regions are observed. For �<0.6, the escape boundary has two minima in the vicin-
ity of the natural frequency, with the lowest escape load occurring for φ �0°. For
�>0.6, the major reduction occurs for ϕ �45°, when the coupling effect is the
highest one.
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Fig. 15 Stability boundaries in force control space (load vs. forcing frequency) for the forcing
direction ϕ �0°, considering the coupled and uncoupled cases. Fesc: escape load

Fig. 16 Stability boundaries in force control space (load vs. forcing frequency) for different values
of the forcing direction ϕ

Now the behavior of the system forϕ �45° is analyzed in detail to understand how
the sequence of bifurcations leading to escape changes with the forcing frequency.
Figure 17 shows the bifurcation diagrams for two excitation frequencies, namely��
1/3 and ��0.4, illustrating in both cases the relevant local bifurcations. Figure 18
shows the loci of the relevant local bifurcations in the fundamental resonance region
prior to escape together with the escape boundary. For small values of the forcing
frequency, the escape is controlled by the saddle-node bifurcation A (SN A), as
illustrated in Fig. 18, leading to a catastrophic bifurcation with a sudden jump to
infinity (first descending branch). The following smooth ascending branch of the
escape boundary is associated with a supercritical pitchfork bifurcation which is
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Fig. 17 Bifurcation diagrams for ϕ �45°, illustrating the relevant local bifurcations for two exci-
tation frequencies. SN: saddle-node, PS: supercritical pitchfork, PSb: subcritical pitchfork, FS:
supercritical flip, E: escape

Fig. 18 Mapping of the local bifurcations in the fundamental resonance region prior to escape for
ϕ �45°

followed by a flip bifurcation, as illustrated in Fig. 17a. The change between saddle-
node and pitchfork bifurcation corresponds to a local minimum of the escape load.
The next descending branch of the escape boundary is due to a subcritical pitchfork
bifurcation, leading again to a catastrophic jump to infinity. The subsequent ascending
branch is connected with a saddle-node bifurcation.

The previous results have shown the significant influence of initial geometric
imperfections on the equilibrium paths, load carrying capacity, and NNMs of the
model. It is thus expected initial imperfection to have an equally substantial influ-
ence on the escape load. Figure 19 compares the stability boundaries for different
frequency values for the perfect system and for the imperfect system considering φ �
1° and ψ �45°. When imperfection is added, a significant decrease of the dynamic
buckling load is observed with respect to the perfect system for any value of the
forcing frequency �.
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Fig. 19 Comparison of the escape boundary of the coupled perfect and imperfect (φ �1° and ψ �
45°) system in the main resonance region. ϕ �45°, λ �0.9, and ξ1 � ξ2 �0.01. Minimum escape
load: Fesc �0.1653 (perfect) and Fesc �0.0510 (imperfect)

Fig. 20 Stability boundaries in force control space (load vs. forcing frequency) for different values
of the forcing direction ϕ (see polar diagram) for the imperfect systems. φ �1° and ψ �45°

Figure 20 shows the stability boundaries for different values of the forcing direc-
tion ϕ, for the imperfect system considering φ �1° and ψ �45°. The results show a
high imperfection sensitivity for all values of ϕ. Thus, the escape load depends not
only on the imperfection magnitude and direction but also on the forcing direction.
The decrease in the escape load is followed by a similar decrease in the safe basin
area. Figure 21, where the θ1 × dθ1/dt cross-section of the basin of attraction of the
perfect (well below the escape threshold, see Fig. 16) and imperfect (slightly below
the escape threshold, see Fig. 20) system are compared, shows the influence of the
imperfection on the basin of attraction for ��1/3, F �0.1, and ϕ �0°.

Finally, Fig. 22 shows the variation of the escape load with the column initial
inclinationφ forψ �45°. The escape load reduction already occurring for the perfect
system owing to the ϕ �� 0◦ excitation direction is clearly visible for φ �0°. As the
initial inclination φ increases the escape load smoothly decreases, but at φ �1.2° it



www.manaraa.com

Nonlinear Dynamics, Safety, and Control … 191

Fig. 21 Variation of the basin of attraction with the geometric imperfection. ��1/3, F �0.1, and
ϕ �0°

suddenly falls down to zero, which corresponds to the complete annihilation of the
basin of attraction for whatever excitation direction (also for the uncoupled case—ϕ

�0°). This shows that evenvery small imperfectionsmayhave a remarkable influence
on the stability and safety of the structure and, in particular, that the residual dynamic
integrity of the system (Rega and Lenci 2005) associated with the nonvanishing
value of the escape load for φ �1° actually corresponds to a very dangerous system
configuration from the nonlinear dynamics viewpoint.

6 Dynamic Integrity and Control

Usually, the loss of safety is triggered by global (homoclinic or heteroclinic) bifur-
cations, since the boundary of the safe basin is the stable manifold of the saddles
lying on the contour of the safe pre-buckling well. For the undamped case, these are
homoclinic or heteroclinic orbits connecting the saddles. For increasing dynamical
load, the safety reduction is related to the penetration of eroding fractal tongues into
the safe basin, which is driven by the evolution of the stable (and unstable, indeed)
manifolds of the saddles on the boundary of the safe region. It may be controlled
by the elimination of manifolds intersections. Based on these considerations, Lenci
and Rega (1998a) developed a method for controlling nonlinear dynamics and chaos
and tested it on various mechanical systems (Lenci and Rega 2004; Rega and Lenci
2010).

Themethod consists of the optimal elimination of intersection of stable and unsta-
ble manifolds (perturbations of homoclinic or heteroclinic orbits) by properly adding
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Fig. 22 Variation of the
escape load with the column
initial inclination φ for ��1
and ψ �45°

superharmonic terms to a given harmonic excitation. By means of the solution of
an appropriate optimization problem, it is possible to select the amplitudes and the
phases of the added superharmonics in such a way that the manifolds distance is as
large as possible. The elimination of the manifolds intersections permits to remove
from the system dynamics various nonlinear phenomena such as chaotic transients,
sensitivity to initial conditions, and fractal basin boundaries.

Single-degree-of-freedom model with its Hamiltonian and perturbed dynam-
ics. Augusti’s model reduces to an s.d.o.f. the system when the springs are equal,
when it is excited in the symmetry directions ϕs �0°, 45°, 90°, 135°, and when the
imperfections are in the same plane of the excitation. To illustrate the control strat-
egy, let us consider the Augusti’s model excited along ϕs �45°. This reduced-order
model has some advantages for the control strategy, including easier computation of
the integrity measures and identification of homoclinic and heteroclinic unperturbed
and perturbed orbits. However, it misses the influence of modal coupling in some
forcing regions (see Fig. 24a forward).

The relevant equation ofmotion could be obtained from the general ones (reported
inOrlando 2010;Orlando et al. 2011a, b) of the two-d.o.f. systemby properly restrict-
ing them to the manifold θ1 �θ2 �u/(2)1/2, with u unique Lagrangian parameter
describing the system configuration when excited in a diagonal symmetry direction.
More simply, the nondimensional kinetic and potential energies and the work of
nonconservative forces can be written directly for the reduced order geometrically
imperfect system (with imperfection in the same direction of the excitation) (Orlando
2010):
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where τ �ωe t and the dot indicates differentiation with respect to τ , ending up to the
following governing equation via application of the extended Hamilton principle:
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The phase portrait of the undamped (ξ �0) unforced (F �0) Eq. (14), which
can easily be obtained by the energy equation T̄ + V̄ � const., is illustrated in
Fig. 23a in the perfect case (u0 �0°), and in Fig. 23b in the imperfect case (u0

�1°�0.01745329 rad). The safe potential well of the Augusti’s perfect model is
bounded by two heteroclinic orbits, while that of the imperfect model is bounded by
a homoclinic orbit. A large decrease in the safe area is observed due to the initial
imperfection, decreasing the practical stability threshold. This is mainly due to the
change of the relevant orbit from heteroclinic to homoclinic.

To determine analytically the illustrated homoclinic and the heteroclinic orbits,
the notation t̄(u)u̇2 � T̄ (u, u̇), valid in both cases when F �0, is used, so that
the total energy can be written as H � t̄(u)u̇2 + V̄ (u). Since these orbits approach
the saddles as time tends to plus and minus infinity, they have the same energy h
� V̄ (usaddle) of the saddles, which is a known constant. By equating H with h, the
equation that describes the homoclinic or the heteroclinic orbit is obtained. Solving
this equation for u̇h and integrating, one gets

u̇h(uh) � ±
√

h − V̄ (uh)

t̄(uh)

duh

dτ
� u̇h(uh) → duh

u̇h(uh)
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du

u̇h(u)

� ±
∫ uh

limit

√
t̄(u)

h − V̄ (u)
du, (15)
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Fig. 23 Heteroclinic and homoclinic orbits that delimit the safe potential well (bounded solutions)
in Augusti’s model. λ �0.9 and ��1/3

Table 1 Equations of the heteroclinic and homoclinic orbits

Heteroclinic orbits Homoclinic orbits

τ (uh) � ∫ uh
0

√
t̄(u)

h−V̄ (u)
du τ1(uh) � − ∫ uh

limit

√
t̄(u)

h−V̄ (u)
du, for

−∞ < τ1 ≤ 0

τ2(uh) � ∫ uh
limit

√
t̄(u)

h−V̄ (u)
du, for 0 ≤ τ2 < ∞

where “limit” is the point on the orbit corresponding to τ �0 (by symmetry consid-
erations, for homoclinic orbits it is the maximum u-extent of the orbit in the phase
space, which is the non-saddle solution of h � V̄ (u), while for heteroclinic orbits it
is 0).

Table 1 shows the equation of the heteroclinic orbit and the two equations that
describe the lower and upper parts (in-phase space) of the homoclinic orbit.

Equation (14) is a particular case of the more general equation

ü +
t̄ ′(u)u̇2

2t̄(u)
+

V̄ ′(u)
2t̄(u)

+
εC̄(u̇)

2t̄(u)
+

ε F̄(u, τ )

2t̄(u)
� 0, (16)

where ε is a small nondimensional parameter which measures the magnitude of
damping and excitation and has been introduced to stress their smallness. t̄ ′(u) and
V̄ ′(u) are the derivatives of t̄(u) and V̄ (u) with respect to u, C̄(u̇) � 2ξ u̇/� is
the damping and F̄(u, τ ) � −Fvar1 sin(τ ) is the external excitation, where var1 �
cos(u

√
2/2). As it will be useful in the following developments related to control, we

consider here the more generic excitation F̄(u, τ ) � −Fvar1 sin( jτ ), which clearly
reduces to the harmonic reference case for j �1.
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Table 2 Functions α1, α2 (j), and α3 (j)

Heteroclinic orbits Homoclinic orbits

α1 � ∫ saddle
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Using information on the unperturbed system (ε �0), Melnikov’s method (Mel-
nikov 1963) allows us to measure the minimum distance between the perturbed (ε ��
0) stable and unstablemanifolds of the saddle, and, consequently, provides a criterion
to determine when the intersection of the two manifolds first occurs (Wiggins 2003).
The Melnikov function is (Orlando 2010)

M(m) � −2ξ

�
α1 + F[cos( jm)α2( j) + sin( jm)α3( j)], (17)

where the expressions of α1, α2(j), and α3(j) are shown in Table 2. By symme-
try considerations, it is possible to show that α2(j)�0 for heteroclinic orbits and
α3(j)�0 for homoclinic orbits.

The intersection of the manifolds occurs if the Melnikov function has a simple
zero. In the reference case of harmonic excitation, j �1, the equation M(m)�0
provides (η is an inessential constant)

2ξ

�
α1 � F

√
α2(1)2 + α3(1)2 sin(m + η), (18)

from which we see that the first intersection occurs for

Fh
cr � 2ξα1

�
√

α2(1)2 + α3(1)2
. (19)

This critical excitation amplitude corresponds to a global (homoclinic or hetero-
clinic) bifurcation.

The behavior charts for perfect and imperfect models around the main resonance
are reported in Fig. 24, including the thresholds of global bifurcation (heteroclinic or
homoclinic bifurcation). Looking at Fig. 24a note that,while allowing to satisfactorily
catch the V-escape region at low-frequency values that we are here interested to
control (see the following subsection), consideration of the s.d.o.f. perfect model
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Fig. 24 Behavior charts in the main resonance region. λ �0.9 and ξ �0.01

misses the second V-escape region exhibited in Fig. 18 by the corresponding two-
d.o.f. coupled model.

Controlling global bifurcations and enhancing system safety. The control method
consists of looking for the periodic excitation which avoids, in an optimal manner,
the intersection of the stable and unstable perturbed manifolds, and comprises the
following steps:

1. determination of the homoclinic or heteroclinic bifurcation (critical excitation
amplitude), e.g., by the method of Melnikov; in the present case this has been
done for the reference harmonic excitation;

2. analysis of the dependence of homoclinic or heteroclinic bifurcation thresholds
on the shape of the excitation, i.e., on the controlling superharmonic terms;
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3. formulation and solution of the mathematical optimization problem, which con-
sists of determining the theoretical optimal excitation thatmaximizes the distance
between the stable and unstable manifolds for a fixed excitation amplitude or,
equivalently, the critical amplitude where the global bifurcation occurs;

4. numerical implementation of the optimal excitation needed to confirm the the-
oretical predictions and to verify the feasibility and performance of the control
technique.

Following this procedure, the excitation is taken in the following form:

F̄(u, τ ) � −F

⎛

⎝sin(τ ) +
n∑

j�2

Fj

F
sin( jτ + ν j )

⎞

⎠var1, (20)

where Fi and ν i, j �2, 3, … n, are the amplitudes and phases of the controlling
superharmonics, whereas F is the overall excitation amplitude.

The Melnikov function with the excitation (20) is

M(m) � −2ξ

�
α1 + F{cos(m)α2(1) + sin(m)α3(1)

+
n∑

j�2

Fj

F
[cos( jm + ν j )α2( j) + sin( jm + ν j )α3( j)]} (21)

and can be rewritten in the form

M(m) � −2ξ

�
α1 + F

√
α2(1)2 + α3(1)2γ (m), (22)

where

γ (m) � sin(η + m) +
n∑

j�2

h j sin(η̄ j + jm + ν j ), h j � Fj

F

√
α2( j)2 + α3( j)2

√
α2(1)2 + α3(1)2

(23)

The critical threshold with control is now

Fcont
cr � 2ξα1

�
√

α2(1)2 + α3(1)2
1

maxm∈[0,2π]{γ (m)} . (24)

Comparing (19) with (24) to ascertain the effect of control, one obtains the control
gain:

G � Fcont
cr

Fh
cr

� 1

maxm∈[0,2π]{γ (m)}
de f� 1

m̄
(25)

The aim of the procedure, as shown in Lenci and Rega (1998b), is to obtain the
lowest value of m̄ <1 that leads to the largest (optimal) value of Fcont

cr .
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For a single unperturbed homoclinic orbit, which is connected to a unique saddle,
using the expression (25) is sufficient to avoid the tangency (and the intersection)
between the stable and unstable manifolds of the perturbed saddle. For a heteroclinic
orbit, this is no longer sufficient because the system has two saddles. It is necessary
to control separately the intersection of the upper and lower branches [Fig. 23a, see
Lenci and Rega (1998b, 2005)]. In this case, instead of the single expression (25),
we have to consider

m̄ inf � maxm∈[0,2π]{γ (m)} → G inf � Fcont
cr,inf

Fh
cr,inf

� 1

m̄ inf
(26)

which applies to the lower heteroclinic connection. By symmetry, for the upper
heteroclinic connection, we must consider

m̄sup � −minm∈[0,2π]{γ (m)} → Gsup � Fcont
cr,sup

Fh
cr,sup

� 1

m̄sup
. (27)

Expressions (26) and (27) must be taken into account in the formulation of the
control method.

Lenci and Rega (2003a, 2004) proposed two types of control: (a) one-side, and
(b) global control. The one-side control is indicated for homoclinic orbits, since
it can only control one orbit. When applied to heteroclinic loops, only one orbit
is controlled, and the uncontrolled one will bifurcate at a lower load level, which is
unwanted. Thus,when only one homoclinic orbitmust be controlled, the optimization
problem can be written as

max
{
Ghom

}
by varying the Fourier coefficients h j and ν j , j � 2, 3, . . . , (28)

where Ghom �G is given by (25).
For the heteroclinic case, both the upper and lower orbits (Gsup and Ginf) can

be simultaneously controlled if the condition Ghet �Ginf �Gsup, that is, maxmε[0, 2π]

{γ (m)}�–minmε[0, 2π] {γ (m)}, is satisfied. This is the global control approach,which
entails solving the following optimization problem:

max
{
Ghet

}
by varying the Fourier coefficients h j and ν j , j � 2, 3, . . . ,

with the constraint maxm∈[0,2π]{γ (m)} � −minm∈[0,2π]{γ (m)}. (29)

The solutions to the optimization problems (28) and (29) give the optimal values
of hi and ν i. They depend on the type of orbit and the number of superharmonics used
in the analysis. Once they are determined, the magnitude of each superharmonic is
simply given by

Fj � Fh j

√
α2(1)2 + α3(1)2√
α2( j)2 + α3( j)2

. (30)
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Table 3 Results of the optimization problems with increasing number of superharmonics consid-
ering one-side control

n Ghom
n h2, ν2 h3, ν3 h4, ν4 h5, ν5

2 1.4142 0.353553, π

3 1.6180 0.552756, π 0.170789, 0

4 1.7321 0.673525, π 0.333274, 0 0.096175, π

5 1.8019 0.751654, π 0.462136, 0 0.215156, π 0.059632, 0

… …. … … … …

∞ 2 1, π 1, 0 1, π 1, 0

Table 4 Results of the optimization problems with increasing number of superharmonics consid-
ering global control. Even superharmonics h2 j vanish

n Ghet
n h3, ν3 h5, ν5 h7, ν7 h9, ν9

3 1.1547 −0.166667, π

5 1.2071 −0.232259, π 0.060987, 0

7 1.2310 −0.264943, π 0.100220, 0 −0.028897, π

9 1.2440 −0.284314, π 0.125257, 0 −0.053460, π 0.016365, 0

… …. … … … …

∞ 1.2732 −0.333333, π 0.200000, 0 −0.142857, π 0.111111, 0

Problems (28) and (29) are independent of the system and of the excitation (in
fact, they do not depend on F, �, and ξ ) and can be solved without any reference to
the mechanical system under investigation. Despite this simplification, the solution
cannot be obtained analytically, and a numerical approximation is required. The
numerical solution of the problems (28) and (29) has been studied by Lenci and
Rega (2003a, b, 2005). The optimal Fourier coefficients hi and ν i for an increasing
number of superharmonics n are shown in Tables 3 and 4 for, respectively, one-side
and global control.

As shown in Table 4, the global optimal solutions only include odd superharmon-
ics. Thus, the solution of the optimization problem (29) can be written as

γ (m) � sin(η + m) +
(n−1)/2∑

j�1

h2 j+1 sin(η̄2 j+1 + (2 j + 1)m + ν2 j+1) (31)

i.e., it belongs to the subclass of symmetric excitations, where the condition
maxmε[0, 2π] {γ (m)}�–minmε[0, 2π] {γ (m)} is automatically satisfied.

The columns of Gh
n in Tables 3 and 4 allow us to observe that, in general, the gains

increase with increasing number of superharmonics. However, the gains for global
control are lower than those for one-side control. The differences are quantitatively
significant. Thus, it can be concluded that the one-side control is much more useful
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from a theoretical point of view. A shortcoming is that it requires larger amplitudes
of the superharmonics. Thus, the one-side control requires more energy expenditure.

The last line of each table presents, for comparison purposes, the values of the
optimal coefficients hi considering an infinite number of superharmonics. These
values represent the upper bounds of the optimal solutions.

We start by applying the control to the perfect model. Here, the parameters ��
0.2465, λ �0.9 and ξ �0.01, corresponding to the lowest escape load and conse-
quently to the most dangerous situation (see Fig. 24a), are considered. In this case,
the magnitude of the load at which heteroclinic bifurcation occurs, obtained from
expression (19), is Fh �Fh

cr,inf �Fh
cr,sup �0.0528979.

According to theoretical analysis, the global control is applied to this case; to
check its performances in the “worst” situation, only a third order superharmonic
excitation (n � 3) is used, so that we can improve the present results simply by using
more superharmonics. The optimal values are h3 �0.166667 and ν3 �π , as shown
in Table 4, and from (30) we get F3 �–1.1152799F. The heteroclinic bifurcation
increases to Fcont �Fcont

cr,inf �Fcont
cr,sup �0.0610813, and there is a gain of 15.47% (see

Table 4).
Observing the basins of attraction shown in Fig. 25, we can better understand the

beneficial effect of the control strategy. For F �0.06, there is practically no erosion
in both situations. When the force increases to F �0.066 the basin of the original
model already shows some erosion while the basin of the controlled model is still
nearly intact. At F �0.07, when the erosion of the basin of the controlled model is
still beginning, the safe basin of the original model already presents a considerable
erosion which entails a fractal structure.

By building many basins of attractions like those in Fig. 25, it is possible to
obtain a synthetic picture of the evolution of the system safety by constructing the so-
called erosion profiles (Rega and Lenci 2008), which provide a measure of the basin
dynamical integrity (i.e., of the safety of the system) versus increasing excitation
amplitude. We consider two different integrity measures (Rega and Lenci 2008):
the Global Integrity Measure (GIM), which measures the entire safe area, and the
Integrity Factor (IF), whose measure is the radius of the largest circle inscribed in
the same safe area. In both cases, the integrity measure is normalized with respect
to the corresponding magnitude for F �0.

The integrity profiles for IF are shown in Fig. 26a for both the controlled and the
uncontrolled case, while those for GIM are shown in Fig. 26b. Besides highlighting a
general shift of the practical starting point of erosion toward higher excitations, with
respect to global bifurcation thresholds, these curves clearly highlight that the theo-
retical control gain of 15.47% is substantially confirmed by numerical simulations.
There is an unquestionable gain due to the addition of the single controlling super-
harmonic to the harmonic excitation: the erosion of the safe basin in the controlled
model starts later (see Fig. 25), thus increasing the magnitude of the disturbances
that the system can undergo without practically losing its stability and consequently
its safety margin in a dynamic environment.

The right control strategy for the imperfect model is the one-side control, which
consists of adding a superharmonic of order two to the harmonic excitation. The
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Fig. 25 Evolution of the basins of attraction with the applied load for ��0.2465, λ �0.9, and
ξ �0.01. Perfect Augusti’s model. Red and black basins correspond to resonant and nonresonant
in-well periodic attractors

optimal values in this situation are given in Table 3, h2 �0.353553 and ν2 �π .
Thus, from (30), we have F2 �1.337189F.

Moving to the imperfect system, the effectiveness of control is demonstrated by
considering the following parameters: u0 �1°, ��0.2465, λ �0.9 and ξ �0.01,
which correspond to the lowest escape load (most dangerous situation), as shown in
Fig. 24b. In this case, the homoclinic bifurcation occurs at F �Fh

cr �0.02561. With
the addition of control, the bifurcation occurs at F �Fcont

cr �0.03622, and the critical
load increases of 41.42%.

The effectiveness of one-side control in terms of reducing fractal basin erosion
is shown in Fig. 27, in particular, by comparing Fig. 27a.2 with Fig. 27b.2. More
generally, the evolution of basins of attraction for increasing load levels shows a
remarkable difference in the behavior of the two models. While the erosion of the
original model starts at F �0.029, the erosion of the controlled model begins only
at about F �0.039, when the basin of the original model is already very eroded.

Figure 28 shows a comparison of the IF and GIM integrity profiles between the
original and controlled models. There is a significant increase (according to the fact
that now the optimal gainG �41.42% is “large”) of the load level atwhich the process
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Fig. 26 Integrity profiles for increasing load for ��0.2465, λ �0.9 and ξ �0.01, original and
controlled (F3 �–1.1152799F and ν3 �π ) cases. Perfect Augusti’s model

of erosion begins, and this largely increases the margin of safety of the system. Up
to this load level, the integrity measures remain practically constant.

ComparedwithFig. 26holding for the perfectmodel, the IF andGIMprofiles show
the marked absolute loss of dynamic integrity due to the geometric imperfection,
making its negative effect on the system safety clear. However, the results show that,
through the present control strategies, one can increase the safety by increasing the
safe region of the basin of attraction. The biggest gain is observed for the imperfect
model, which is the expected situation in practical applications as well as the most
dangerous one, because the range of involved values of F is much lower and the
thresholds of starting erosion and final escape are much closer to each other (see
also Fig. 23). The imperfection changes the heteroclinic orbit into a homoclinic one
and, consequently, the optimal control changes from global to one-side, which is
more efficient. When more superharmonics are considered in the control strategy,
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Fig. 27 Evolution of the basin of attraction foru0 �1°,��0.2465,λ�0.9, and ξ �0.01. Imperfect
Augusti’s model. Red and black basins correspond to resonant and nonresonant in-well periodic
attractors

the theoretical gain increases, as shown in Tables 3 and 4, and so even better results
are expected in practice.

7 Cylindrical Shell: Reduced-Order Model, Global
Behavior, Dynamic Integrity

The nonlinear dynamic analysis of continuous systems, such as thin plates and shells,
is a problem of relevance inmany engineering fields. The finite element method is the
most used approach for nonlinear dynamic analyses of these structures. However, the
computational effort is very high.As an alternative to complex numerical approaches,
analytical methods using simplified models can be successfully employed to under-
stand the main nonlinear features of the problem and may constitute efficient tools in
the initial design stages. For plates and shells, the derivation of efficient reduced-order
models is, in fact, essential due to the complex nonlinear response of these struc-
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Fig. 28 Integrity profiles for increasing load for u0 �1°,��0.2465, λ �0.9 and ξ �0.01, original
and controlled (F2 �1.337189F and ν2 �π ) cases. Imperfect Augusti’s model

tures. The usual procedure is to reduce the partial differential equations of motion
of the continuous system to an approximate system of time-dependent ordinary dif-
ferential equations of motion, which are in turn solved by numerical methods or,
approximately, by perturbation procedures. However, the use of inappropriate modal
expansions usually leads to misleading results or may require a rather large num-
ber of terms. Consistent nonlinear models can be derived by the use of perturbation
techniques, nonlinear normalmodes or proper orthogonal decomposition (Gonçalves
et al. 2008) which can capture the influence of modal couplings and interactions.

This section is based on an extensive research work on the dynamics of cylin-
drical shells. The nonlinear vibration analysis of fluid-filled cylindrical shells was
initially investigated by Gonçalves and Batista (1988). Based on this seminal work,
Gonçalves and Del Prado (2002, 2004), using a reduced-order model, investigated
in detail the nonlinear oscillations and stability of parametrically excited cylindrical
shells and the influence of nonlinear modal interaction between different nonlinear
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Fig. 29 Circular cylindrical shell: a geometry and system and b applied axial load

modes on the parametric stability of the shell. Then the effect of modal coupling was
further analyzed by Rodrigues et al. (2014). Based on the developed formulation,
Gonçalves et al. (2007a, b) studied the transient stability of empty and fluid-filled
cylindrical shells and their global stability and dynamic integrity through the evolu-
tion of basin boundaries. Later, a general modal expansion for the nonlinear analysis
of cylindrical shells was developed by Gonçalves et al. (2008) based on a perturba-
tion procedure and proper orthogonal decomposition. This was generalized for any
number of interacting modes in Gonçalves et al. (2016). The potential energy of pre-
loaded cylindrical shells may exhibit several potential wells and several coexisting
dynamic solutions. A detailed parametric analysis of the bifurcations, basin evolu-
tion and dynamic integrity measures of an axially loaded cylindrical shell, using a
reduced 2-d.o.f. model, was further investigated by Gonçalves et al. (2011). Selected
results are presented in this section. Recently, Silva et al. (2015) analyzed the influ-
ence of physical and geometrical uncertainties in the parametric instability load of
an axially excited cylindrical shell.

Parametrically excited thin-walled cylindrical shells are among the several struc-
tural components where modal coupling and interaction have a fundamental role
in the static and dynamic response. In the remaining part of this chapter, a brief
discussion of this problem is presented. Consider a thin-walled, simply supported
cylindrical shell of radiusR, lengthL, and thickness h. A cylindrical system is adopted
with the center at the lower end of the shell, as illustrated in Fig. 29. The mid-surface
displacements in the axial, circumferential and radial directions are denoted, respec-
tively, by u, v, and w. The shell material is considered to be elastic, homogeneous
and isotropic with Young’s modulus E, Poisson ratio ν, and density ρ. For most shell
geometries its dynamics can be accurately described by Donnell’s nonlinear shallow
shell theory in terms of the transversal displacement w and a stress function f (Brush
and Almroth 1975).

Using Donnell’s nonlinear shallow shell theory, the equation of motion in the
transversal direction is given by
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ρ h w,t t +β1w,t +β2∇w,t +D∇4w � (
P(t) + f,y y

)
w,x x

+ f,x x
(
w,y y + 1/R

) − 2 f,x yw,x y, (32)

where D=Eh3/ [12(1−ν2)] is the flexural stiffness, β1 and β2 are, respectively, the
linear viscous damping and the viscoelastic material damping coefficients, P(t)�
P0 +P1 cos (�t) is the applied axial load, which is the sum of the axial static pre-
load, P0, plus an harmonic time-dependent axial load, being P1 the load magnitude
and � the forcing frequency, and ∇4 is the bi-harmonic operator, and the associated
compatibility equation is written as

1

E h
∇4 f � − 1

R
w,xx − w,xx w,yy + w2

,xy . (33)

To obtain a consistent modeling with a limited number of modes, the sum of shape
functions for the displacements must express the inherent nonlinear coupling among
these modes and the in–out asymmetry of the deformed curved shell surface. Per-
turbation methods may be used to identify these essential modes and the importance
of each mode in the modal expansion can be quantified by computing the relevant
contribution to the total energy of the system. Based on these considerations, the lat-
eral deflection w for an infinitely long shell can be generally described as (Rodrigues
et al. 2014; Gonçalves et al. 2016)

w �
∑

i�1,3,5

∑

j�1,3,5

Wi j cos (i nθ) sin( j mπξ)

+
∑

k�0,2,4

∑

��0,2,4

Wkl cos (k nθ) cos(� mπξ), (34)

where n is the number of waves in the circumferential direction of the basic buckling
or vibration mode, m is the number of half-waves in the axial direction, θ =y/R and
ξ =x/L.

Onemust retain in (34) at least twomodes to obtain a qualitatively correct descrip-
tion of the nonlinear vibrationmodes: the basic vibrationmode—the seedmode—and
the corresponding axisymmetric mode with twice the number of half-waves in the
axial direction as the basic mode, that is

W (θ, ξ, τ ) � ζ (τ )n,m cos(n θ) sin(mπξ) + ζ (τ )0,2m cos(2mπξ), (35)

where τ = tω0, ω0 is the lowest natural frequency of the shell and ζ ij �Wij/h.
The substitution of (35) into the compatibility equation (33) leads to the following

solution for the nondimensional stress function:
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f̄ � −1

4

β2

α2

θ2

π

√
3
(
1 − ν2

)� +
m2

π2
(
m2 + γ 2

)2 ζ11cos(n θ)sin(m π ξ)

+
1

4

ζ02

m2π2
cos(2m π ξ) + 2

α m2n2

π2
(
m2 + γ 2

)2 ζ11ζ02cos(n θ)sin(m π ξ)

− 2
α m2n2

π2
(
9m2 + γ 2

)2 ζ11ζ02cos(nθ)sin(3m π ξ) +
1

32

α n2

m2π2
ζ 2
11cos(2m π ξ)

− 1

32

β4h m2π2

n2α3
ζ 2
11cos(2n θ), (36)

where the following nondimensional quantities were introduced:

α � h/R β � h/L γ � L n/π R ξ � x/L

ζi j � Wi j/h θ � y/R � � P/Pcr f̄ � R f/(Eh2L2) (37)

andPcr =E h2/{R [3(1−ν2)]1/2} is the static critical load of an axially loaded cylinder
(Brush and Almroth 1975; Bazant and Cedolin 1991).

By applying theGalerkinmethod, the following set of two simultaneous nonlinear
differential equations of motion is obtained:

T11ζ̈11 + R11ζ̇11 + (V11 − �11)ζ11 + V112ζ11ζ02 +
1

6
V1111ζ

3
11

+
1

2
V1122ζ11ζ

2
02 � 0

T22ζ̈02 + R22ζ̈02 + (V22 − �22)ζ02 +
1

2
V112ζ

2
11 +

1

2
V1122ζ

2
11ζ02 � 0. (38)

This low-dimensional model has been compared with more refined modal expan-
sions and shell theories in Gonçalves et al. (2008), where it has been shown to retain
the essential nonlinear features of the problem.

Based on the discretized model, the following expressions are obtained for the
total potential energy of the statically loaded shell, V , and kinetic energy, T :


 � 1

2
(V11 − �11)ζ

2
11 +

1

2
(V22 − �22)ζ

2
02

+
1

2
V112ζ

2
11ζ02 +

1

24
V1111ζ

4
11 +

1

4
V1122ζ

2
11ζ

2
02 (39)

T � 1

4
T11ζ̇

2
11 +

1

4
T22ζ̇

2
02. (40)

More refined models can be obtained by considering an increasing number of
modes in Eq. (35) and by applying the Galerkin method. Figure 30a shows the con-
vergence of the frequency–amplitude relation of the cylindrical shell. It is observed
that the inclusion of the first- (02, 20, 22) and second-order modes (31, 13, 33)
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Fig. 30 Influence of first (02, 20, 22) and second order modes (31, 13, 33) obtained by the per-
turbation procedure on the frequency–amplitude relation of a cylindrical shell. a Convergence, b
coupling effect: seed mode (linear vibration mode) plus selected first- and second-order modes.
m=1; n=5; R �0.2 m; h �0.002 m; L �0.40 m; E �210 GPa; ν �0.3; ρ �7850 kg/m3

obtained by the perturbation procedure leads to convergence for vibration ampli-
tudes up to three times the shell thickness (here ξ ij �Wij/h). Figure 30b shows the
influence of the nonlinear modal coupling between the seed mode (linear vibration
or buckling mode) and selected second- and third-order modes. It is observed that,
while in most cases the coupling leads to a hardening behavior, the coupling between
the seed mode and the axisymmetric mode with twice the number of waves in the
axial direction as the seedmode leads to the expected softening behavior for this shell
geometry andmode shape. This is the essential modal coupling due to quadratic non-
linearity for cylindrical shells, and is the main responsible for the in–out asymmetry
of the shell nonlinear displacement field, as explained in detail by McRobie et al.
(1999). The in–out asymmetry is due to the initial shell curvature. This cannot be
observed in a linear analysis or in system with only cubic nonlinearity (e.g., perfect
nonlinear plate). This axisymmetric mode has been sometimes approximated by a
series of axisymmetric linearmodes, increasing thus themodel order. Gonçalves et al.
(2011) have used a 2-d.o.f. model based on this modal expansion to investigate the
global dynamics and integrity of a parametrically excited cylindrical shell based on
the evolution of the basins of attraction of the several coexisting solution. At present,
such analysis cannot be properly conducted using higher dimensional models.

Figure 31a shows the characteristic unstable post-buckling path of the axially
loaded shell obtained with the present reduced model. For load levels between the
minimum post-critical load, �min (saddle-node bifurcation) and the critical load of
the shell (�0 �P0/Pcr �1.0��0cr , subcritical pitchfork bifurcation) there are five
equilibrium positions. Figure 31b shows for a static load level �0 �0.4 the five
equilibrium points, the two heteroclinic orbits that connect the two hilltop saddles



www.manaraa.com

Nonlinear Dynamics, Safety, and Control … 209

Fig. 31 a Post-buckling response of the axially loaded shell. b The five equilibrium points (two
saddles and three centers) of the shell for a static load level �0 �0.4 and the two heteroclinic and
two homoclinic orbits connecting the two saddles

and define the contour of the pre-buckling potential well and the two homoclinic
orbits that define the contour of the two post-buckling wells.

The stability of the pre-loaded shell (�0 �0.4) under harmonic axial load is
summarized in Fig. 32, where the main parametric resonance region of the pre-
loaded shell around twice the lowest natural frequency of the loaded shell (ωp) is
shown together with the transient and permanent escape boundaries. The definition
of transient and permanent escape was introduced by Thompson and co-workers
(Thompson 1989; Soliman and Thompson 1989; Lansbury et al. 1992; Soliman and
Thompson 1992). Here, the transient escape boundary is obtained considering the
response starting from rest after each load increment, at least during the transient
stage, the pre-buckling potential well (Gonçalves et al. 2007a). The permanent escape
corresponds to the complete annihilation of the basin of attraction of all solutions
within the pre-buckling well. The left-hand side of the main instability regions cor-
responds to subcritical parametric bifurcations, where the trivial solutions become
unstable, giving rise to a period-two unstable solution, while the right-hand side
of the stability boundary corresponds to supercritical bifurcations, where the trivial
solutions become unstable, giving rise to a period-two stable solution. This is typical
of softening systems. For a hardening system, the reverse occurs.

First, to understand the global behavior of the shell, a bifurcation diagram contain-
ing all stable solutions is shown in Fig. 33 for��1.50 (subcritical bifurcation). The
shell displays periodic, quasi-periodic and chaotic in-well and cross-well solutions of
various orders. Five broad classes of periodic solution can be identified: (1) the trivial
pre-buckling solution, (2) the nontrivial 2T solution within the pre-buckling well, (3)
the small-amplitude initial vibrations within each of the post-buckling wells (the two
branches are symmetric with respect to the ζ 11 axis), (4) the long-lasting medium-
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Fig. 32 Main parametric
instability region of the
pre-loaded shell. Parametric,
transient escape (system
starting from rest at each
load increment), and
permanent escape (complete
erosion of safe basin)
instability boundaries.
�0 �0.4

amplitude cross-well solutions, and (5) a very large-amplitude cross-well period-3
solution which is robust in the whole excitation amplitude range. All periodic solu-
tions are identified for future reference by the symbol Pj in Fig. 33a for selected
values of the forcing amplitude and the projections of their four-dimensional orbits
in the plane ζ11(τ)× dζ11(τ)/dτ are shown in Fig. 34.

Figure 35 shows in black, for small values of the excitation magnitude �1, the
cross-sections of the 4D safe basin of the pre-buckling trivial solution by the ζ11(τ)
× dζ11(τ)/dτ plane while the initial conditions that lead to the possibly different
out-of-well solutions are depicted with the same white color. The dots denote the
relevant attractors which are the centers of the hyper-spheres associated with the
definition of the local integrity measure, LIM (Soliman and Thompson 1989). In
Fig. 35a for �1 �0.0 (static case), the white parallel tongues immersed in the black
region are associatedwith the post-buckling solutions and delimit the radius of the 4D
hyper-sphere that defines the integrity measure, LIM. As observed here the hyper-
sphere touches in this plane the white region, but it will be shown later for other
solutions how the hyper-sphere could also fictitiously intersect a competing basin
if drawn on different cross-sections. As the magnitude of the load increases from
zero a 1T periodic attractor arises in the post-buckling well (see Fig. 34a) from the
stable equilibrium point. This solution experiences a period doubling bifurcation at
A (Figs. 33b and 34b).

Figure 35b shows for �1 �0.04 the same basin structure with the thin white
tongues corresponding to this attractor. These results show that a very small (minor)
attractor can significantly modify the integrity of the main one, thus justifying the
need to analyze competing profiles of several coexisting solutions, as successively
pursued. These thin white tongues decrease as �1 increases and disappear at �1 �
0.050 (point B in Fig. 33b) when all post-buckling 2T solutions become unstable
and the safe basin shows a remarkable increase, as illustrated in Fig. 35c for �1 �
0.10, where the LIM radius is bounded by the vertical white tongues that correspond
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Fig. 33 Bifurcation diagram: a identification of different types of stable periodic solutions, b
bifurcation points and classes of solutions. �0 �0.40 and ��1.50

to the large-amplitude cross-well period-3 solution occurring in the whole �1 range.
The saddle-node bifurcation occurring at point C and the ensuing 2T stable medium-
amplitude cross-well solution (see Fig. 34c) plus a minor 4T cross-well attractor in
a very small �1 range, denoted as O13 in Fig. 33b, lead to a sudden decrease in the
LIM radius, as shown in Fig. 35d.

Point D in Fig. 33b (�1 �0.202) corresponds to the re-stabilization of the post-
buckling solution and point E denotes the saddle-node bifurcation giving rise to the
2T stable pre-buckling well solution which competes with the trivial solution up to
point G. So, the system exhibits an increasing number of attractors, as illustrated in
Fig. 34d and 34ewhere, respectively, four and five attractors are observed, in addition
to the (not shown) 3T large cross-well motion. So, the basins of attraction exhibit
an increasing complexity. The competition between the two in-well pre-buckling
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(a) Γ1 = 0.02 (b) Γ1 = 0.04

(c) Γ1 = 0.17 (d) Γ1 = 0.21

(e) Γ1 = 0.23 (f) Γ1 = 0.35

Fig. 34 Projections of the different solutions on the ζ11(τ) versus dζ11(τ)/dτ plane for selected
values of �1. ��1.50 and �0 �0.40



www.manaraa.com

Nonlinear Dynamics, Safety, and Control … 213

(g) Γ1 = 0.55 (h) Γ1 = 0.65

(i) Γ1 = 1.00 (j) Γ1 = 1.30

Fig. 34 (continued)

attractors is illustrated in the basin cross-sections shown for increasing values of�1 in
Fig. 36 where black corresponds to the trivial solution, white to the escape solutions,
and the two blue dark and light shade sub-basins to the 2T pre-buckling solution
(P10 in Figs. 33a and 34e). These cross-sections allow us to focus on the competition
and evolution of in-well solutions (classes O1 and O2), without being interested in
distinguishing betweenbasins of different out-of-well solutions (shownwith the same
white color). Enlarged versions of these basins containing also the basins of the post-
buckled and cross-well solutions are presented in Fig. 37. Note that, being the basins
of attraction contained in a 4D hyper-volume, it is not easy in some circumstances
to observe when the hyper-sphere centered in a given attractor touches the nearest
competing basin. The large window in Fig. 37 is useful to give a general view of the
topological complexity of the overall attractors-basins portrait when working in 4D,
by also resolving some relevant seemingly odd issues. In particular Fig. 37 properly
shows also the two fixed points (Fig. 37a–d) corresponding to the period-2 medium-
amplitude cross-well solutions O4 (P6–P9–P13–P15, already visible in the phase
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Fig. 35 Cross-sections of the basins of attraction of the in-well pre-buckling trivial solution (ζ02 �
ζ̇02 � 0) and of the corresponding hyper-sphere. ��1.50 and �0 �0.40. Black: trivial solution.
White: escaping trajectories

portraits of Fig. 34c–f) as well as their splitting (P17–P18, Figs. 34g and 37e) after
the pitchfork bifurcation at H (Fig. 33b). Moreover, it allows to distinguish, again
through different colors, between the relevant sub-basins, which, however, due to
the considered (ζ02(τ)�dζ02(τ)/dτ�0) cross-section, seem to be totally uncorrelated
with the reference attractors (e.g., the right/left external yellow points in Fig. 37awith
respect to the relevant up/down light/dark red sub-basins). The issue can, however, be
resolved by looking at cross-sectionsmade at suitable ζ 02, dζ02(τ)/dτ values allowing
to properly locate the fixed points of the medium-amplitude cross-well solutions into
their respective sub-basins (Gonçalves et al. 2011).

To evaluate the system dynamic integrity, different measures can be used, as
already shown for the Augusti model (for a more general treatment of the matter,
see Rega et al. 2018 in this book). The global integrity measure (GIM), defined
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(a) Γ1 = 0.212 (b) Γ1 = 0.217

(c) Γ1 = 0.225 (d) Γ1 = 0.300

(e) Γ1 = 0.500 (f) Γ1 = 0.700

Fig. 36 Basins of attraction of the in-well pre-buckling attractors (ζ02(τ)�dζ02(τ)/dτ�0). ��
1.50 and �0 �0.40. Black: trivial solution. Light and dark blue: period-two bifurcated solution.
White: escaping trajectories
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(a) Γ1 = 0.212 (b) Γ1 = 0.217

(c) Γ1 = 0.225 (d) Γ1 = 0.30

(e) Γ1 = 0.50 (f) Γ1 = 0.70

Fig. 37 Enlarged views of basins of attractions containing both in-well and out-of-well attractors
(ζ02(τ)�dζ02(τ)/dτ�0). ��1.50 and �0 �0.40
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Fig. 38 Variation of the LIM of the solutions for �0 �0.40 and ��1.50. Subcritical parametric
bifurcation

as the normalized hyper-volume of the safe basin, is the most intuitive and easy
measure, but it is not satisfactory in all cases in which the safe basin is strongly
fractal or intertwined with other basins. Moreover, although all trajectories with
initial conditions in the black area of Fig. 35 converge to the trivial solution, initial
conditions away from the pre-buckling well may lead to rather long large-amplitude
cross-well involved transients. This is an unacceptable situation in most structural
problems, such as the present one, where large-amplitude cross-well motions lead
to high stresses and damage of the structure material, leading in most cases to the
failure of the structural system. In such a situation, the integrity factor IF is definitely
more appropriate than the GIM in the evaluation of the integrity of the structure. As
a matter of fact, being the GIM insensitive to the basin compactness, it would lead to
a (locally) completely different erosion profile and would dramatically overestimate
the dynamic integrity of the reference main solution. As mentioned previously, the
local integrity measure (LIM) proposed by Soliman and Thompson (1989) can be
defined as the maximum radius of the hyper-sphere entirely belonging to the safe
basin and centered at the attractor, and leads to a radius equal or smaller than the IF.
This integrity measure is used in the present analysis.

For the reference subcritical case, jointly looking at bifurcation diagram (Fig. 33),
phase portraits (Fig. 34), and attractor-basin portraits (zoomed, Figs. 35 and 36;
enlarged, Fig. 37), and summarizing the relevant results in terms of integrity profiles
(Fig. 38), the competition among various solutions in different�1 ranges is apparent.
Hereafter solutions and competition features are discussed in detail.

1. For very low �1 (<0.05), solution classes O1 and O3 do coexist, with the former
being in the pre-buckled (central) well and the latter in the post-buckled (lateral)
wells (Fig. 33b), and the corresponding LIM being ∼�3.0 and 0.3, respectively
(Fig. 38).
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2. In the low�1 range (0.05–0.125), there is only the trivial solutionO1with the very
large LIM value, which is bounded by the large-amplitude cross-well period-3
solution occurring in the whole �1 range.

3. In a small subsequent �1 range (about 0.125–0.262), a number of nearly coexist-
ing dynamic/topological phenomena do occur, and affect the competing integrity
profiles in a relatively clear way. The LIM of solution O1 falls down to about
3.6 due to the onset (point C, �1 �0.125) of the 2T cross-well solution O4,
whose white basin overall delimits the black one in Fig. 36a and in the following
sub-figures. In between D and E (Fig. 33b, �1 �0.212), the reestablished (while
dying) solution O3, somehow affects the LIM of solution O1; however, this LIM
further falls down—up to definitely vanishing at point G—in connection with
the meaningful shrinking of its basin (Fig. 36b, c) due to the onset at E of the
subcritically bifurcated in-well solution O2, whose LIM increases from zero to
about 1.5 in this range.

4. In the low-medium �1 range (about 0.262–0.726), the basin (and the LIM pro-
file) of the pre-buckling in-well period-two solution O2 are smoothly eroded
(Figs. 36d–f and 37d–f) by the basin (and profile) of the cross-well solution
O4, and of its bifurcated solutions O5 and O6, up to their definite vanishing at
point K. At point H the self-antisymmetric solution P15 undergoes a symmetry-
breaking (pitchfork) bifurcation giving rise to two antisymmetric (mirrored) 2T
solutions P17 and P18 (Fig. 34g). The same occurs in the reverse direction (i.e.,
with decreasing �1) on passing from the self-antisymmetric P24 (Fig. 34i) to the
antisymmetric solutions P21 and P22 (Fig. 34h). The two antisymmetric 2T solu-
tions P17 and P18 (or O5 and O6) coexist with comparable basins (Fig. 37e) and
increasing LIMs (see Fig. 38 where just one light gray profile is shown for these
cross-well solutions), their influence on the decreasing LIM of the pre-buckling
2T solution O2 being clearly visible in Fig. 38. In between points I (�1 �0.635)
and J (�1 �0.685) the interaction among the five attractors (Fig. 34h)—four in
the post-buckling and one in the pre-buckling well—is rather complex, but this
is actually a minor (localized) issue.

5. Between points J and L, the orange profiles of the vanishing cross-well antisym-
metric solutionsO7andO8first increase and thendecrease due to some increasing
intertwining of their basins. The newborn cross-well solution O9 dominates the
dynamics in the larger �1 range up to the onset of another couple of mirrored
competing cross-well solutions O11 and O12 at point M, with a very large LIM
limited again by the large-amplitude 3T cross-well motion.

6. The new cross-well solutions start as a couple of narrow-size quasi-periodic
attractors, thereafter evolving to the two competing cross-well solutions P26 and
P27, and are responsible for the strong LIM decrease of the orange cross-well
solutionO9 at�1

∼�1.2. The further decrease of theLIMof all three solutions (just
one blue profile being shown in Fig. 38 for the cross-well O11 andO12 solutions)
is due to the increasing intertwining and fractality of the competing basins. The
level of complexity increases as �1 increases, where the fractal structure of the
competing basins of the 1T solutions P26 and P27 (Fig. 34j) leads to a practically
null LIM.
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8 The Influence of Uncertainties in Systems Liable
to Unstable Buckling

Slender structural systems liable to unstable buckling usually becomeunstable at load
levelsmuch lower than the linear buckling load of the perfect structure. In some cases,
experimental buckling loads can be just a small fraction of the theoretical critical
load (Batista and Gonçalves 1994). This is mainly due to the imperfections present in
real structures. The imperfection sensitivity of structures under static loading is well
studied in the literature, but little is known on the sensitivity of these structures under
dynamic conditions. In a dynamic environment, not only geometric imperfections but
also initial conditions (disturbances), physical and geometrical system parameters
uncertainties and excitation noise influence the bifurcation scenario and basins of
attraction.

The influence of both random noise and system parameter uncertainties on
the dynamic instability of structural systems liable to buckling was discussed in
Gonçalves and Santee (2008), Silva and Gonçalves (2015), Gonçalves et al. (2007a),
Wiebe and Spottswood (2014). The influence of uncertainties and random noise is
particularly important in the vibration control of dynamical systems with multiple
coexisting attractors.

The physical parameters (E, υ, and ρ) and the geometrical parameters (L, R, and
h) of the shell usually have some reference values, which are defined at the stage of
design. However, depending on the allowable tolerances in the fabrication process,
small variations of these parameters may occur. Usually, these small variations have
a negligible influence on the load capacity of the structure. But in structural systems
liable to buckling, due to mainly the inherent nonlinearity of the buckling process,
small changes may lead to significant changes in the load capacity and safety of the
structure.

For each physical and geometrical parameter,α, the following uniform probability
density function, f , is assumed (Gonçalves and Santee 2008):

f (α) �
⎧
⎨

⎩

100
2α0Q , i f α0 − α0Q

100 < α < α0 +
α0Q
100

0, otherwise
(41)

where α is the system parameter (E, υ, ρ, L, R, or h), α0 is the mean value of the
chosen parameter (design value), and Q is a parameter which expresses the quality
of the fabrication process as a percentage of the mean value, α0.

Figure 39 shows the stability boundaries of the buckling load of a system subjected
to asymmetric bifurcation considering a slowly applied load (in black) and a suddenly
applied load (in red) together with the scatter of buckling loads obtained considering
uncertainties in all system parameters for both loading cases, except the external
load [Q �10 in Eq. (41)]. The scatter of results illustrates the sensitive dependence
of structures liable to unstable buckling to not only geometric imperfections but
also any variation of the system parameters. These results are compared with the
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Fig. 39 Buckling load of an imperfection-sensitive structure considering uncertainties in all system
material and geometric parameters. Red: suddenly applied load. Black: slowly applied load

curves of constant basin area and the Melnikov load for this structure (Gonçalves
and Santee 2008). The results corroborate the lower bound character of theMelnikov
load. However, if a good quality control is considered at the fabrication stage, the
designer may use a less conservative estimate of the dynamic buckling load based
on the safe basin area. In fact, one can observe in Fig. 39 that almost all results in
this numerical experiment are above the curve corresponding to a safe basin with an
area equal to 40% of the reference basin of the unloaded system A0.

Consider now the cylindrical shell subjected to a harmonic axial load of the
following form:

P � P0 + P1 cos(ω t) + G(P1, ω, t) (42)

whereP0 is the axial static pre-load,P1 is the amplitude of the deterministic harmonic
load, ω is the deterministic excitation frequency, t is time, and G(P1, ω, t) is the
random disturbance that depends on the deterministic parameters P1 and ω.

For the numerical calculations of the present work, the nondeterministic term of
the axial load in (42),G(P1,ω, t), is considered as a stationary and ergodic continuous
stochastic process in time (Gonçalves and Santee 2008). Another hypothesis is that
the stochastic process G(P1, ω, t) has a zero expected value, that is

E[G(P1, ω, t)] � 0. (43)

The description of a stochastic process is usually made in the frequency domain.
Here, it is assumed that the random term G(P1, ω, t) has a spectral density function
given by
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�GG(ω̄) � σ 2
GG

2ωl
for� − ωl

2
< ω̄ < � +

ωl

2
, (44)

where σ 2
GG is the variance of the random force amplitude and ωl is the frequency

bandwidth of the excitation frequency.
Additionally, it is considered that the standard deviation of the random force

amplitude is proportional to the deterministic force amplitude, P1, thus

σGG � δP1 (45)

where δ is the standard deviation parameter of proportionality. So, the random force
is a stochastic process that depends on the frequency, ω, and amplitude, P1, of the
deterministic term. The numerical algorithms used in the present work can be found
in Gonçalves and Santee (2008).

Figure 40 (Silva et al. 2012) shows the influence of the random portion of the load,
G(P1,ω, t), described byEq. (42), on the parametric instability and escape boundaries
of the axially loaded cylindrical shell for one bandwidth, ωl, 0.50 and two values of
the standard deviation parameter, δ, 0.05 and 0.10. For this value of ωl and δ, ten
samples are generated and the twocritical loads are evaluated, considering the average
values of the shell geometry and physical parameters. In Fig. 40, curves in black are
the results for a deterministic harmonic force. The dashed gray curves represent the
average of the escape load. The presence of noise leads to a dispersion of the results
in the right side of the instability region. The continuous gray curves represent the
value of the mean load added or subtracted from the value of the standard deviation
of ten samples. As the standard deviation parameter, δ, increases, the dispersion of
the dynamic buckling loads increases. Also all escape loads of the perturbed system
are lower than the permanent escape load of the shell under a deterministic load. So,
the shell is sensitive to noise in the excitation and this decreases the safety of the
shell in a dynamic environment.

Figure 41 illustrates the influence of random noise on the basin of attraction of
the shell considering �0 �0.40, �1 �0.40, ��1.60. It shows three cross-sections
of the 12-dimensional basin of attraction by the ζ11(τ) × dζ11(τ)/dτ plane. A total of
150 × 150 cells are considered in the analysis. The black region corresponds to the
initial conditions that converge to the period-two attractor within the pre-buckling
well while the gray region corresponds to initial conditions that lead to a period-two
large-amplitude solution outside the pre-buckling well. Figure 41a corresponds to
the deterministic case and Fig. 41b and Fig. 41c are related to perturbed solutions
obtained with δ �0.05 and δ �0.10, respectively, and ωl �0.25. In the deterministic
case, each set of initial conditions leads to a specific attractor. In the nondeterministic
case, for each set of initial conditions, the equations of motion are integrated using
ten different samples of random perturbation. If in all cases all responses converge
to the same attractor as in the deterministic case the cell is either marked in black or
gray, but if they converge to different attractors or if the attractor is different from
the one identified in the deterministic case, this means that the response associated
with a given set of initial conditions is sensitive to random noise and the cell is
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Fig. 40 Instability boundaries in force control space. (Γ 0 �0.40, ωl �0.50)

Fig. 41 Cross-sections of the basin of the attraction of the shell submitted to a a deterministic and
b, c nondeterministic load. (�0 �0.40, �1 �0.40, ��1.60)

marked in white in Fig. 41b, c. As the standard deviation parameter δ increases the
white region increases, decreasing the safe region associated with a given attractor.
Yet, it is worth noting how the black basin compactness (to be suitably measured
by a proper integrity measure, e.g., the IF) of the safe period-two attractor within
the pre-buckling well in the nondeterministic case is not meaningfully reduced with
respect to the corresponding deterministic one.

9 Conclusions

In this chapter, we studied the nonlinear dynamics of two archetypal structural sys-
tems exhibiting interactive modal post-buckling behavior, the discrete Augusti’s
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model, and a reduced-order model of an axially loaded cylindrical shell. The uncou-
pled models exhibit a stable post-buckling response. However, in both cases, the
modal interaction leads to unstable post-buckling paths that have a marked influ-
ence on the underlying potential energy, which exhibits several saddles at the same
energy level surrounding and defining the boundary of the safe pre-bucklingwell. The
resulting topology of the potential energy leads to a complex dynamic behavior and
imperfection sensitivity, which has a marked influence on the dynamic integrity and
safety of the structure in a dynamic environment. Also, these models present some
inherent symmetries which influence the nonlinear static and dynamic response,
being closely connected with the observed modal couplings and interactions.

First, we carried out a systematic analysis of the global response of Augusti’s
model and the mechanisms responsible for escape from a safe potential well. The
static buckling analysis of the model stresses the influence of the modal coupling,
imperfections, and symmetry on the nonlinear behavior of the system. Strong modal
coupling is observed when the two bifurcation loads are equal, or nearly equal,
leading to various unstable post-buckling solutions. Safe solutions are defined as
the static pre-buckling equilibrium position and periodic oscillations which remain
within the pre-buckling potential well. First, the response of the perfect and imperfect
conservative system is studied through various cross-sections of the phase space and
identification of the heteroclinic orbits of the saddles that define the safe region. This
region is swiftly reduced as the static load approaches the critical value. Then we
investigate how symmetries and imperfections influence the number, stability, and
bifurcations of the nonlinear vibrationmodes. The analysis of Poincaré sections of the
Hamiltonian systems for increasing energy levels shows that the inherent symmetries
of the perfect systems lead to a superabundance of modes, including both similar
and non-similar modes which influence the nonlinear resonant behavior. Next, the
behavior of the model under harmonic base excitation, considering different forcing
directions, is analyzed, emphasizing the influence of the modal coupling on the
dynamics and stability of the system. The escape boundaries are obtained and the
bifurcations connected with these boundaries are identified. Basin cross-sections of
the bounded solutions are studied for increasing forcing amplitudes and the integrity
factor that measures the size of the compact basin of the safe attractor is evaluated.
The resulting integrity profiles clarify the robustness of bounded solutions and show
to be a good measure of the safety of the structure in an evolving environment.
Finally, a method for controlling nonlinear dynamics and chaos has been applied to a
reduced s.d.o.f. Augusti’s model with the aim of increasing its load carrying capacity,
or the “practical” stability threshold. After having summarized the main features of
the control method, it has been applied to the considered mechanical systems, both
in the presence and in the absence of geometrical imperfections, in each case by
applying the appropriate version of the control method. The methodology leads to
an increment of the integrity of the basins of attraction in the excitation ranges where
the erosion takes place, thus increasing both (i) the performance of the system in
a dynamic environment, and (ii) its “practical” safety and thus its load carrying
capacity.
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As an example of a continuous system exhibiting strongmodal coupling and inter-
action, a low-dimensional, qualitatively consistent two-degree-of-freedom model is
used to investigate in detail the global nonlinear behavior and stability of a thin-
walled cylindrical shell under axial load. Selecting a practically relevant static load
level in the region where the shell displays three potential wells, the complex bifur-
cation scenario displayed by the pre-loaded shell under harmonic excitation in the
main parametric instability region is investigated. Characteristic bifurcation scenar-
ios are investigated and all stable solutions are identified up to large load levels. They
include periodic, quasi-periodic, and chaotic solutions. The basins of attraction of the
different solutions in the four-dimensional phase space are obtained for increasing
load levels. The basin cross-sections show how the basins interact with each other
and how their simultaneous evolution influences their integrity and, consequently,
the integrity factors that measure the size of the compact basin of each attractor. The
resulting integrity profiles clarify the robustness of each solution and show to be
a good measure of the safety of the structure in an evolving environment. Besides
an intricate pattern of erosion of competing solutions, two different global events,
namely the final escape of system response from the safe pre-buckling well and the
final onset of a complex cross-well dynamics, are discussed along with their distinct,
mechanical vs dynamical, meanings.

As shown by the two examples, for a structure liable to unstable post-buckling
response, the critical load of the perfect or imperfect structure is an upper bound of its
buckling load, both in the static and dynamic case, since it corresponds to a safe basin
with the null area. So, any disturbance, however small, leads to buckling. To preserve
the integrity of the structure under finite perturbation, the designer should prescribe a
sufficiently large and robust compact basin surrounding the fixed point of the desired
solution. So it is worthwhile in such cases to study how system uncertainties and load
noise affect the structure safety. Results show that uncertainties in system parameters
influence the dynamic buckling loads that are mostly lower than the load of the
unperturbed ideal system. The scatter of results varies with the forcing frequency and
is governed by the variation of the safe basin of attraction. For a harmonically excited
structure, the known results show that small random noise influences the integrity
of the basin of attraction, but has a small influence on the local integrity measure
and integrity factor. Large perturbations of the harmonic signal only influence these
integrity measures at a load level near the critical load.

The present chapter shows how a judicious use of the tools of nonlinear dynamic
analysis can be used to access the safety of structural systems liable to unstable
buckling under static and dynamic loads. However, most of these tools are rather
difficult to employ in the analysis of high-dimensional system, the alternative being
in such case to obtain a reduced-ordermodel based, for example, on nonlinear normal
modes.

Acknowledgements Figures 14, 15, 16, 17, and 18 are reproduced from (Orlando et al. 2011b)
with the permission of ASME. Figures 24, 25, 26, 27 and 28 are reproduced from (Lenci et al.
2012a) with the permission of AIP Publishing.
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Local Versus Global Dynamics
and Control of an AFM Model
in a Safety Perspective

Valeria Settimi and Giuseppe Rega

Abstract The role of local and global dynamics to assess a system robustness and
actual safety in operating conditions is investigated, by also studying the effect of
different local andglobal control techniques on the nonlinear behavior of a noncontact
AFM. First, the nonlinear dynamical behavior of a single-mode model of noncontact
AFM is analyzed in terms of stability of the main periodic solutions, as well as
attractors robustness and basins integrity. To the same AFM model, an external
feedback control is inserted during its nonlinear continuum formulation, with the aim
to keep the system response to an operationally suitable one. The dynamical analysis
of the controlled system is developed to investigate and verify the effects of control
into the system overall behavior, which could be unexpectedly influenced by the
local nature of the control technique. A different control technique is finally applied
to the AFM model, acting on global bifurcation events to obtain an enlargement
of the systems safe region in parameters space. The analytical procedure, based on
Melnikov method, is applied to the homoclinic bifurcation involving the system
hilltop saddle, and its practical effects as regards possibly increasing the system
overall robustness are numerically investigated by means of a dynamical integrity
analysis. Then, a fully numerical procedure is implemented to possibly control global
bifurcations involving generic saddles. The method proves to succeed in delaying
the drop down of the erosion profile, thus increasing the overall robustness of the
system during operating conditions.
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1 Introduction

Analyzing the nonlinear dynamical behavior of a mechanical system usually entails
the investigation of the stability of its response under variation of some (character-
izing and/or controllable) parameter. Bifurcation diagrams and behavior charts in
parameters space allow to verify the system robustness to possible changes of the
operational parameter setup, and often reveal a wide variety of nonlinear phenom-
ena, such as bifurcations and in-well instability regions which can lead to possible
unstable, aperiodic, or chaotic oscillations. However, besides these analyses, possible
changes in the system initial conditions due to imperfections have to be taken into
account, since it is nowadays ascertained that the safe operation of a nonlinear system
depends not only on the local stability of its solutions but also on the global dynamics
associated with the uncorrupted basin surrounding each solution. It appears therefore
evident that tools and concepts of global dynamics and dynamical integrity represent
crucial instruments not only to achieve a complete and accurate description of the
system dynamics, but, from a practical viewpoint, to assess the actual safety of a
dynamical system (Rega and Lenci 2015). More importantly, they can be proposed
as a comprehensive approach to be applied for an in-depth investigation of a non-
linear model, in order not only to theoretically analyze the robustness of competing
attractors and the erosion processes that bring to the escape from bounded regions,
but also to critically evaluate the effect of different control techniques and, from
an operational viewpoint, to furnish hints useful for engineering design. Following
these guidelines, this chapter aims to present a general framework for studying local
and global dynamics, as well as control, of a sample mechanical system, taking as
reference a reduced order model of noncontact Atomic Force Microscope (AFM),
which can indeed represent a large number of nonlinear models with some ensuing
dynamic phenomena.

AFMs are powerful devices used for surface analysis in nanoelectronics, mechan-
ics of materials and biotechnology, as they permit to topologically characterize sur-
faces up to micro- and nano-resolution levels (Sarid 1991; Morita et al. 2009; Eaton
and West 2010). In a typical AFM, the topography is imaged by scanning a sharp
tip, fixed to the free end of a microcantilever vertically bending over the sample sur-
face, and by measuring the tip deflection through a laser technology. The tip–sample
interaction modifies the beam dynamics and allows not only to image surfaces but
also to measure some physical properties of the sample. As far as the AFM dynamics
is concerned, the most common operation modes are the tapping mode, in which the
tip operates in both attractive and repulsive force regions and touches the surface
only for short time intervals, and the noncontact mode, in which there is absence
of contact between the tip and the sample and their interaction is governed by a
solely attractive potential. Consequently, for the latter type of AFM, the tip has to
maintain a design gap from the sample such to ensure that the beam elastic restoring
force is stronger than the atomic attraction. Otherwise, instability of the equilibrium
configuration occurs, with the so-called “jump to contact”, or escape (in dynamical
systems terms), phenomenon. As the dynamic excitation tends to strongly reduce the
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equilibrium gap, the study of system stability as a function of a varying excitation
amplitude, among other physical parameters, is a very important issue for noncon-
tact AFMs, in order to reliably determine the escape threshold separating the region
of bounded (i.e., noncontact) solutions from that of unbounded solutions, the latter
corresponding to unwanted contacts between tip and sample.

During the scan operation, moreover, the sample roughness can modify the dis-
tance between the microcantilever tip and the sample to be scanned, and thus, the
nonlinear atomic force interaction which is used to obtain the topography can lead
to unstable dangerous motions. To prevent these undesirable motions and improve
the microscope performances, several control techniques have been proposed in the
field of AFMs during the last two decades, primarily based on the feedback control
methods that work by keeping the microcantilever vibration to a selected reference
one and allowing to simultaneously and reliably measure the sample surface. How-
ever, since these procedures are focused on controlling the system local dynamics,
their impact on the system overall dynamics is generally unknown. Nevertheless,
analyzing the latter is of great importance, especially for micro/nanomechanical sys-
tems like AFMs for which slight changes of the initial position and/or velocity at
the nanoscale level, or modifications of the operational parameter setup, can produce
dramatic modifications of the overall dynamics.

From a global dynamics perspective, it is thus of interest to clearly detect in the
state plane the basins of attraction of the periodic (acceptable) solutions and that of
the (undesirable) unbounded response compromising the device operation. Further-
more, the relevant erosion process due to variations of some system parameter can be
followed and quantified bymeans of the construction of the so-called erosion profiles.
As a practical consequence of such analyses, which belong to the field of dynami-
cal integrity, the sensitivity of a system to variations of both operational parameters
and initial conditions can be discussed, and some hints useful to define thresholds
able to ensure acceptable safety targets can be achieved. The concept of dynamical
integrity can be also referred to for developing a different control technique based on
the global properties of the dynamical system, which acts on the homo/heteroclinic
bifurcations involving the stable and unstablemanifolds of the system saddles respon-
sible for the erosion of the basins. It operates by properly shifting them thanks to the
addition of some controlling superharmonics to the reference harmonic excitation,
thus increasing the system overall robustness.

The chapter is organized as follows. Nonlinear local and global dynamics of a
reduced order model of noncontact AFM are presented in Sect. 2, while Sect. 3 inves-
tigates the dynamical effects of an external feedback control on the overall response
of the AFMmodel. Section 4 deals with the implementation, into the same model, of
a global control technique, whose effects are analyzed and critically discussed also
in terms of safer AFM operation. Finally, in Sect. 5, some general conclusions are
drawn.
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2 Nonlinear Dynamics of a Reduced Order Model
of Noncontact AFM

2.1 Equations of Motion, Reduced Order Model,
and Unperturbed System

The physical model under consideration is a fixed-free atomic force microscope
(AFM) microcantilever, which is assumed to be planar, inextensible, and horizontal,
with length L and a sharp tip of height hT close to its free end, and with a distance g
between its fixed side and the sample (Fig. 1a) (Hornstein and Gottlieb 2008). The
beammaterial is considered linearly elastic, homogeneous, and isotropic, withYoung
modulus E . Reference is made to the general formulation based on the classical
inextensional beam model of Crespo da Silva and Glynn (1978). Accordingly, the
set of two coupled partial differential equations (PDEs) for the beam horizontal and
vertical transverse vibrations is

mūtt − [E I v̄rrr v̄r − Jz v̄t tr v̄r + �(1 + ūr )]r = Q̄u

mv̄t t − [E I (v̄rrr + v̄r v̄
2
rr ) + Jz(v̄t tr + v̄2

tr v̄r ) + �v̄r ]r = Q̄v

(1)

where ū(r, t) and v̄(r, t) are the horizontal and vertical displacements and subscript
letters denote partial differentiation with respect to arc length r and time t . Coef-
ficients E I , Jz , and m are beam stiffness, principal moment of inertia, and mass
per unit length, respectively, and � is a Lagrangian multiplier accounting for the
inextensibility condition (1 + ūr )2 + v̄2

r = 1. Generalized forces in horizontal and
vertical direction are represented by Q̄u , Q̄v , the former corresponding to a feedback
control force depending on the horizontal displacement and the latter also accounting
for the localized (at r = aT , see Fig. 1a) transverse atomic force interaction derived
from a Lennard Jones potential for a sphere-plane system (Israelachvili 1992; Sarid
et al. 1996), localized at the tip and representing the interaction between the tip and
the sample. Since the AFM under analysis operates in noncontact regime, the most
important atomic force interaction is the attractive one and the repulsion interaction
can be neglected. The set of nonhomogeneous boundary conditions

Fig. 1 Microcantilever
model

L
aT

Ū

V̄
g

hT−v̄(r)



www.manaraa.com

Local Versus Global Dynamics and Control of an AFM Model … 233

v̄(0, t) = V̄ (t), v̄r (0, t) = 0, ū(0, t) = Ū (t),

v̄rr (L , t) = 0, v̄rrr (L , t) = 0, ūr (L , t) = 0
(2)

completes the formulation of the problem, with V̄ (t) and Ū (t) being the prescribed
vertical transverse and horizontal scan displacement, respectively.

The incorporation of the holonomic constraint, which allows to express the hor-
izontal displacement in terms of the vertical one, the isolation and expansion of
the Lagrange multiplier, and the nondimensionalization and use of a moving refer-
ence frame (v(s, τ ) = w(s, τ ) + V (τ )) lead to the formulation of an initial-boundary
value problem (IBVP) with a homogeneous set of boundary conditions for the trans-
verse vibrating motion. A single-mode assumption (w(s, τ ) = q1(τ )φ1(s)) and a
Galerkin approximation (the basis function being that of a clamped-spring beam)
reduce the IBVP to the second-order ordinary differential equation (ODE), which
has the following nondimensional form:

(
1 + α2x

2
)
ẍ + (

α1 + α2 ẋ
2 + α3x

2
)
x = − �1

(
1 + x + Vg

)2 − (
ρ1 + ρ2x

2
)
ẋ

− ν2
(
V̈g + ν1V̇g

) + (
μ1x + μ2x

3
) (
Üg + η1U̇g + η2Ug

)
(3)

where x(τ ) = q1(τ )φ1(α)/γ and tN = ω1τ ; α and γ are the nondimensional tip dis-
tances from the microbeam fixed end and the sample, respectively; ρ1 is the damping
coefficient;�1 is the atomic attraction parameter; α1, α2 and α3 are coefficients of the
linear and nonlinear terms; Ug = U/γ and Vg = V/γ represent the horizontal and
vertical excitations; η1, η2 and ρ2 are internal feedback control parameters, the first
two related to the time dependent horizontal scan and the latter to the cubic damping
term. For the nondimensionalizations and detailed expressions of all coefficients, see
Hornstein and Gottlieb (2008).

It is worth underlining that the choice to refer to a single-degree-of-freedommodel
is here justified by the operating conditions dealt with in the following. In fact, even
if it has been shown that for tapping AFMs a multimode Galerkin approximation is
needed to detect nonlinear phenomena (e.g., grazing bifurcations) that a single-mode
analysis does not match, however, in the noncontact operation range, a multimode
discretization does not enrich the system response, and a single-mode approxima-
tion is sufficient to detect the main nonlinear aspects (Bahrami and Nayfeh 2012).
Moreover, the investigated frequency range spans around primary and secondary res-
onances of the first mode, where the contribution of the higher modes is substantially
negligible (Hornstein and Gottlieb 2012).

Accounting for the orders of magnitude of various coefficients in commercial
AFMs, feedback controls and the nonlinear terms related to α2 can be neglected, to
obtain

ẍ + α1x + α3x
3 = − �1

(
1 + x + Vg

)2 − ρ1 ẋ − ν2
(
V̈g + ν1V̇g

) + μ1xÜg (4)
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Note that the AFM scan process is performed by means of both vertical and horizon-
tal excitations, the former allowing to quantify the interaction forces and the latter
being necessary to obtain the three-dimensional map of the sample. Yet, in existing
commercial AFMs the horizontal scan (parametric) frequency is much smaller than
the vertical (external) one, so that it appears reasonable to study the two forced cases
in the neighborhood of resonances separately. The results presented in this chapter
will thus refer to the sole parametric horizontal scan, which is supposed to be har-
monic (Ug = U sin(ωut)), even if few considerations will be drawn about the role
played by the vertical external excitation, as well.

The operation domain of noncontact AFMsmust be such to avoid jump to contact
with the scanned sample. In dynamical system terms, this is ascertained by consid-
ering the undamped, unforced version of Eq. (4)

ẍ + α1x + α3x
3 + �1

(1 + x)2
= 0 (5)

with the relevant Hamiltonian, where y = ẋ , being

⎧
⎪⎨

⎪⎩

ẋ = ∂H

∂y

ẏ = −∂H

∂x

H(x, y) = y2

2
+ V (x) = y2

2
+ α1x2

2
+ α3x4

4
− �1

1 + x

(6)

with the associated single, asymmetric, potential well with left (i.e., towards the
sample position x = −1) contact direction (Fig. 2a). The unperturbed state space
is depicted in Fig. 2b, where the two fixed points of the time-independent problem,
i.e., the stable equilibrium (E) of the cantilever tip under elastic (α1, α3) and atomic
interaction (�1) forces and the corresponding hilltop saddle (SH ), are reported for a
given set of values of the governing parameters. The homoclinic orbit yh(t) of the
saddle is also plotted in Fig. 2b: it separates the inner region of bounded periodic
solutions from the outer region of unbounded solutions, the former representing
the safe domain for noncontact AFM operation. The study of the fixed points as a
function of the atomic interaction coefficient �1 is reported in Fig. 2c for α1 = 1 and
α3 = 0.1, and provides the upper boundary for the stable equilibrium E existence
at the limit value �1 = 4/27 where a saddle-node bifurcation leads to the birth of
the unstable branch. The lower stable equilibrium E1 settles under the limit value
x = −1,which corresponds to the position of the samplewith respect to the cantilever
tip, thus having no physical meaning. This entails that for �1 values higher than that
of the saddle-node, the microbeam jumps to contact with the sampled surface. This
phenomenon, associatedwith the escape of the response from the single potentialwell
of Fig. 2a, is precluded in noncontact AFMs: so, there is a great interest in analyzing
the conditions for its impending occurrence in different ranges of frequency around
parametric (and/or external) resonances, along with the features through which they
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(a) (b)

(c)

Fig. 2 Potential V (x) (a), and unperturbed phase space (b) for α1 = 1, α3 = 0.1, �1 = 0.1. Gray
line: homoclinic orbit; solid black line: periodic orbit; dashed black line: unbounded orbit. System
equilibria as a function of the atomic attraction �1 (c). E, E1: stable equilibria; SH: hilltop saddle

are realized when varying a control parameter, typically an excitation amplitude
characteristic of the system.

2.2 Bifurcation Scenarios, Response Charts, and Escape
Threshold

The nonlinear response of the parametrically excited single-mode model is analyzed
via continuation techniques and numerical simulation (Doedel and Oldeman 2012),
for the following set of parameter values (Rega and Settimi 2013):

α1 = 1, α3 = 0.1, ρ1 = 0.001, �1 = 0.1, μ1 = 1.5708 (7)

The calculated natural frequency for these values is ω1 = 0.835. Several bifurcation
diagrams as a function of the forcing amplitudeU have been obtained in a large range
of frequencies including the fundamental (ωu = ω1) and principal (ωu = 2ω1) para-
metric resonances, and the main periodic solutions and local bifurcations have been
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Fig. 3 Local bifurcations map and overall escape threshold in the frequency-amplitude space
of parametric excitation. Gray area: region of stable response; SN1: saddle-node of the 1-period
solution; SN2: saddle-node of the 2-period solution; SpPD1: supercritical period doubling of the
1-period solution; SpPD2: supercritical period doubling of the 2-period solution; SbPD1: subcritical
period doubling of the 1-period solution. Numbers I to IV correspond to fourmain regions of distinct
response scenarios

detected. These diagrams exhibit a variety of response scenarios. The local bifur-
cation loci in the excitation parameter control space (forcing frequency vs. forcing
amplitude) are summarized in the semilogarithmic chart of Fig. 3. The system over-
all escape threshold separates the bounded solutions (below the curve) from the
unbounded solutions (above the curve) and is obtained as the envelope of local bifur-
cation escape thresholds in different parameter ranges. From a physical viewpoint, it
represents the (unacceptable) amplitude value that would bring the beam tip oscilla-
tion beyond the location of the sample (at x = −1); from the dynamical viewpoint it
corresponds to the total annihilation of all basins of attraction (see Sect. 2.3 forward).
Changes in the escape threshold slope correspond to changes in the kind of bifurca-
tion event leading to escape and, apart from a localized exchange of the governing
one in the frequency range between 0.4 and 0.5, four main different regions can be
identified in the parameter control space (Fig. 3), from the escape viewpoint.

Region I includes low frequencies set on the left (ωu = 0.5−0.72) of the down-
ward vertex A of the overall escape threshold corresponding to nonlinear fundamen-
tal resonance. Here, the system displays coexistence, for low values of the forcing
amplitude, of two stable 1-period solutions, with the initial low-amplitude (nonreso-
nant) P1L solution being connected to the (resonant) P1H solution of high amplitude
through the classical unstable branch in between a couple of saddle-node bifurca-
tions. In this range, the nonresonant solution governs the escape from the bounded
region, which thus is determined by the occurrence of the relevant saddle-node bifur-
cation, while the resonant response exists in a limited range of forcing amplitude
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(a)

P1L

P1H

(b)

Fig. 4 Bifurcation diagram, and enlargement, as a function of the forcing amplitude U at ωu =
0.8 (a) and phase portrait of the P1L (gray line) and P1H (black line) periodic solutions at U =
0.01 (b). P1L: low-amplitude (nonresonant) 1-period solution; P1H: high-amplitude (resonant)
1-period solution; P8: 8-period solution; P1∗: 1-period solution; SN: saddle-node bifurcation; SpPD:
supercritical period doubling bifurcation

and becomes unstable through a supercritical period doubling. As the frequency
approaches the nonlinear resonance (ωu = 0.72, A-vertex), the latter bifurcation
moves to growing amplitude values, until at the right of the nonlinear resonance
(region II, ωu = 0.72−1.12), it becomes the local event triggering escape, as shown
in the sample bifurcation diagram reported in Fig. 4. Escape occurs after a sequence of
period doublings ending up to chaos and disappearing through a successive boundary
crisis, all of this being not represented in Fig. 3 because of occurring in very nar-
row ranges of the control parameter. The III and IV regions are characterized by the
presence of a 2-period solution, typical of the dynamical behavior around the subhar-
monic resonance, which arises through a subcritical period doubling of the 1-period
response (SbPD1) and disappears bymeans of a supercritical period doubling. In this
respect, thus, the role played by the saddle-node bifurcation of the low-amplitude
1-period solution at left of the A-vertex is herein replaced by this subcritical period
doubling bifurcation. The 2-period solution becomes stable via saddle-node (SN2)
bifurcation at low values of forcing amplitude; the response pattern is now similar to
the one in region I, apart from replacing P1H with P2. As in that case, the range of
coexistence of stable P1 and P2 solutions grows upwith increasing forcing frequency,
up to entailing (at ωu

∼= 1.56, B-vertex) the exchange of the local event triggering
overall escape from SbPD1 to the supercritical period doubling bifurcation (SpPD2)
of P2. This is substantially the same pattern as the one on the right of the nonlinear
fundamental resonance and, indeed, the cascade of period doubling bifurcations aris-
ing from SpPD2 keeps governing the system escape in the whole region IV, which
includes the principal resonance range (ωu = 1.56−1.8, see the bifurcation diagram
of Fig. 5).
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(a)

P1

P2

(b)

Fig. 5 Bifurcation diagram as a function of the forcing amplitude U at ωu = 1.6 (a) and phase
portrait of the P1 (gray line) and P2 (black line) periodic solutions at U = 0.01 (b). P1: 1-period
solution; P2: 2-period solution; P12: 12-period solution; P20: 20-period solution; SN2: saddle-node
bifurcation of P2; SbPD1: subcritical period doubling bifurcation of P1; SpPD2: supercritical period
doubling bifurcation of P2

Fig. 6 Behavior chart in the
ωu-U plane close to
fundamental resonance ω1.
Gray area: region of stable
response; P1L/P1H:
nonresonant/resonant
1-period solutions;
SN1L/SN1H: saddle-node of
the P1L/P1H solution; SpPD:
supercritical period doubling

The bifurcation diagrams of Figs. 4 and 5 show also the short-range coexistence
with the main periodic solutions of variable solutions of higher periodicity, which
arise from saddle-node bifurcations and end up with local chaotic responses via
series of period doublings occurring in very narrow ranges of amplitude values.
These solutions are indeed of minor interest.

Focusing around the fundamental resonance (Fig. 6), the system shows the same
qualitative behavior of a number of softening oscillators subjected to primary exter-
nal excitation, such as the Helmholtz oscillator (Szemplinska-Stupnicka 1992) and
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Fig. 7 Behavior chart in the
ωu-U plane at low frequency
values. Gray area: region of
stable response; P1L/P1H:
nonresonant/resonant
1-period solutons; SN:
saddle-node bifurcation; PD:
supercritical period doubling

single-mode models of MEMs (Lenci and Rega 2006; Alsaleem et al. 2010), espe-
cially for what concerns the V-shaped region of escape, its limiting boundaries, and
the underlying triangle region with the two coexisting 1-period solutions. Figure 6
shows that such a coexistence in the region in between the two SN loci occurs up to
ωu = 0.835 = ω1, where they collapsewith each other. Right of this value, and above
the corresponding value of forcing amplitude, the sole period-1 solution previously
associated with P1H occurs (now called P1 solution) and its annihilation through
SpPD (and the following series of period doublings) characterizes the smooth transi-
tion to escape for increasing amplitude. Note again that no loci of supercritical period
doubling of higher periodicity solutions are reported in Fig. 6, left of (and above) the
SpPD threshold, nor the ensuing locus of boundary crisis leading to escape, since
these events occur in a very narrow range of control parameter values. Note also that,
in contrast, transition to escape from the left side occurs via the typical sudden SN
bifurcation.

For the sake of completeness, it is worth noting that the inspection of the bifur-
cation/response scenarios at low values of the forcing frequency (Fig. 7) points out
some interesting features of the systemdynamical behavior. The global escape thresh-
old, in fact, displays local minima at frequencies values corresponding to superhar-
monic resonances ωu

∼= 0.41 = ω1/2 (also visible in Fig. 3),ωu
∼= 0.27 = ω1/3 and

ωu
∼= 0.21 = ω1/4, where, as already seen at fundamental resonance, the dynamical

response is characterized by a recurrent triangle region of coexistence of nonreso-
nant P1L and resonant P1H solutions, and, according to the resonance frequency
value, such solutions are now periodic responses with two harmonics of frequency
ω and 2ω (3ω, 4ω). Soon after and to the right of these triangle regions, the sys-
tem displays the presence of two thresholds of period doubling which delimit a nar-
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Fig. 8 Behavior chart in the
�1-U plane close to
fundamental resonance ω1.
Gray area: region of stable
response; P1L/P1H:
nonresonant/resonant
1-period solutons;
SN1L/SN1H: saddle-node of
the P1L/P1H solution; PD:
period doubling

row region around ultrasuperharmonic frequencies atωu = 0.218 − 0.229 ∼= 2ω1/7,
ωu = 0.301 − 0.326 ∼= 2ω1/5 and ωu = 0.47 − 0.55 ∼= 2ω1/3. Inside these ranges,
the sole P1 solution becomes unstable via a subcritical period doubling which leads
to the birth of a P2 solution, whose frequency components include, besides the
ω/2 frequency characterizing the period-doubled solutions, the superharmonic fre-
quency and its higher harmonics. Thus, summarizing the general dynamical behav-
ior of the model, it can be stated that at fundamental and superharmonic resonance
frequencies (i.e., ωu = ω1/n, n = 1, 2, 3, 4, . . .), the system response is character-
ized by coexistence of resonant and nonresonant 1-period solutions, while at prin-
cipal resonance and ultrasuperharmonic resonance frequencies (i.e., ωu = 2ω1/n,
n = 1, 3, 5, 7, . . .), the main and partially coexisting periodic responses are 1-period
and 2-period solutions.

Finally, it is of interest to analyze the influence of the nonlinear interaction param-
eter variation �1 on the system dynamical response; such parameter, which depends
on the kind of tip and sample materials and their distance at nanoscale level, is in fact
the characterizing ingredient of an AFM model, and introduces a nonlinear term of
order-2 into the system (see Eq. (4)). The behavior chart in the �1-U plane reported
in Fig. 8 for a forcing frequencyωu = 0.7 near the fundamental resonance shows that
as the nonlinear interaction increases, with respect to the reference value �1 = 0.1
used for the previous numerical analyses, the amplitude escape value for the P1L
solution rapidly decreases, up to the disappearance of such periodic solution and
consequently of the region of coexistence of resonant P1H and nonresonant P1L
solutions (at �1

∼= 0.13); after that, for higher values of the interaction parameter the
sole P1H solution remains as system stable periodic solution, and its escape boundary
represented by the supercritical period doubling threshold PD1H moves to higher
values of the forcing amplitude U , enlarging the stability region up to �1

∼= 0.14,
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when it drastically falls down causing the annihilation of the P1H stability region.
The outcomes of Fig. 8 can be exploited for design purposes by referring to a dual
reading key: on the one hand, in fact, they point out the crucial role played by the
tip–sample nonlinear interaction on the response of the AFM cantilever, furnish-
ing practical information about the limiting values of forcing amplitude to be used
depending on the sample constitutive properties (i.e., with a given value of�1), while
on the other hand, they can be used to calibrate the tip–sample interaction (e.g., tip
material choice, or material of the sample to be possibly scanned) depending on the
AFMoperation settings (e.g., excitation amplitude). Both aspects are of considerable
interest in the design stage.

2.3 Global Dynamics and Integrity

The previous investigations highlight that the lowest escape values of forcing ampli-
tude occur at the two main resonance regions, and provide the escape profile as the
envelope of forcing amplitude values at which bounded solutions disappear. Yet,
such a global stability boundary does not furnish any information about the erosion
process of the basins of attraction of the various solutions, which is indeed a crit-
ical issue corresponding to system impending jump to contact; therefore, it has no
practical utility from the viewpoint of AFM safe operation mode. In this respect, the
fundamental concept is the dynamical integrity of the system (see Rega et al. 2018 in
this book), which depends on the extent of the erosion of its safe basin represented
by the region of the phase space bounded by the homoclinic orbit in the underlying
unperturbed system of Fig. 2a.

Tools for investigating the complete basin evolution under a control parameter
variation up to escape are the erosion profiles, which allow us to quantify the varying
level of basin erosion. Their construction is carried out by means of specific compu-
tational tools, based on the safe basin definition and the integrity measure concept. In
this work, the safe basin is considered as the union of all classical basins of attraction
of the bounded solutions belonging to the system potential well, without taking care
of possible transient dynamics out of the safe basin. This means that, in the case
of coexistence of more in-well attractors, the safe basin comprises two, or more,
competing basins. However, safe basins in the more classical meaning of basins of
attraction of given solutions will also be considered when being interested in eval-
uating the robustness of competing attractors, too, along with the respective roles
in the erosion process. The integrity indicators used to build the erosion profiles are
the global integrity measure (GIM), which represents the normalized hyper-volume
(area in 2D) of the safe basin, and the integrity factor (IF), which is the normal-
ized radius of the largest hypersphere (circle in 2D) entirely belonging to the safe
basin, and represents a measure of the sole compact part of the safe basin. In this
last respect, note that IF is used instead of the local integrity measure (LIM) also
accounting for the sole compact part, because the safe basin of interest here is the
whole potential well. The phase space window x ∈ [−0.3, 0.3], y ∈ [−0.65, 0.25]



www.manaraa.com

242 V. Settimi and G. Rega

has been considered in the numerical simulations, since it contains the compact part
of the basin of each of the main attractors involved in the erosion/escape process.

Focusing around the fundamental resonance, which from what obtained in
Sect. 2.2 results to be an important critical region as regards the system stabil-
ity, Fig. 9 displays the evolution for increasing forcing amplitude of the basins of
attraction before (ωu = 0.7, Fig. 9a), in the close neighborhood of (ωu = 0.8 ∼= ω1,
Fig. 9b), and after (ωu = 0.9, Fig. 9c) the resonance, representing different features
of the erosion process leading to escape. Before the resonance (Fig. 9a), a weak
competing (purple) basin corresponding to the resonant P1H solution appears within
the in-well safe basin initially coinciding with the (green) basin of attraction of the
nonresonant P1L response, close to its boundary. However, as the amplitude slightly
increases, the two basins are separated by erosion tongues of the unbounded solution
(white) basin surrounding the well (third panel of Fig. 9a), and the small basin of
the resonant solution is rapidly eroded up to its complete disappearance. After that,
the erosion of the main nonresonant basin processes up to the escape with smooth,
i.e., uncorrupted, basin boundary.

When moving closer to the resonance condition, in between nonlinear and linear
resonances (Fig. 9b), the competition between nonresonant and resonant basins,
whose robustness is now comparable, becomes definitively stronger with the newly
born P1Hbasinwhich grows up swiftly, andwith smooth boundary,within the in-well
safe basin (second panel of Fig. 9b) up to full replacement of the original P1L basin.
For increasing amplitude, it is then raggedly eroded from the unbounded solution
basin (fourth panel of Fig. 9b).

Finally, after the resonance (Fig. 9c), the erosion scenario exhibits a sequence of
competing basins corresponding to higher periodicity solutions, each one of them
lasting for a limited forcing amplitude range. Their distributed small subbasins are
located close to the boundary of the sole 1-period basin, a circumstance that entails an
overall ragged aspect of the latter along the erosion process. The subsequent onset of
the new competing 1-period P1∗ solution, seen also in the final part of the bifurcation
diagram of Fig. 4, for high values of the forcing amplitude (aboveU = 0.604), brings
to an inside-the-well, secondary, seemingly double-well potential structure of the
competing basins (third panel of Fig. 9c), which then split from each other with
strongly fractal edges in between (fourth panel of Fig. 9c).
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Fig. 9 Basins of attraction and relevant attractors in the (x, y) plane at ωu = 0.7 and
U = 0/0.006/0.01/0.1 (a), at ωu = 0.8 and U = 0/0.01/0.03/0.1 (b), at ωu = 0.9 and U =
0/0.5/0.65/0.75 (c). Green basin: P1L (P1 at ωu = 0.9) solution; purple basin: P1H solution;
blue basin: P1∗ solution at ωu = 0.9; black basin: high-period solutions; white basin: unbounded
solution. The reported circles represent the IF measures for the in-well safe basin
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The richness of erosion patterns underlying escape is also reflected on the erosion
profiles obtained by calculating IF and GIM integrity measures from the basins evo-
lution of Fig. 9. In Fig. 10, reference is made both to the individual basins of main
periodic solutions (light gray and black curves) and to the total in-well safe basin
(thick black lines). GIM and IF profiles are plotted in solid and dashed lines, respec-
tively, and are nondimensionalized with respect to the safe basin of the unforced
system (i.e., for U = 0), to obtain dimensionless numbers.

At ωu = 0.7 (Fig. 10a), the safe basin profile exhibits a sharp, though relatively
limited, fall down at low amplitude values when the resonant and nonresonant basins
separate inside the well (at aroundU = 0.0067). After that, its evolution, which now
coincideswith that of the P1Lbasin, evolveswith a long and smooth decrease down to
zero. Differently, close to the resonance (Fig. 10b), the strong competition between
the basins is highlighted by the crossing between the decreasing P1L (light gray)
profile and the increasing (black) one related to the new growing up P1H solution.
The internal competition occurs up to nearly complete substitution of the original
P1L basin with the new P1H one, which is immediately followed by an ever sharper
erosion of the in-well safe basin (thick black, now coinciding with the P1H one),
due to the surrounding escape tongues. For frequencies higher than the resonance
one, the safe basin profile coincides with that of the main 1-period solution, since the
size of the other high-period basins is negligible compared to the well. Its evolution
develops smoothly for a wide range of forcing amplitude, up to the separation of the
two 1-period basins inside the well which causes a sharp fall down to zero coinciding
with the loss of safety of the system.

The integrity curves highlight also a different behavior of the two integrity mea-
sures, ensuing from their respective definitions and related to the different features of
the erosion process. In fact, when the erosion develops smoothly and from the outer
edge of the safe basin or, more generally, in case of weak competition between the
basins, the volume (GIM) of the basin is affected in amajor way than its compact core
(IF), thus entailing a lower value (i.e., in design terms, a major conservativeness) of
the GIMmeasure. In contrast, when the competing basins undergo a strong rolled up
evolution, or in presence of very marked fractal eroding tongues, the compact part of
the basins is reduced more than its entire volume, and the IF measure becomes more
conservative (or even much more conservative, if looking at the single attractors’
profiles) than the GIM one, from the safety/robustness viewpoint.

It is worth looking at a summary diagram of GIM profiles of the in-well safe basin
for different forcing frequencies: Figure 11 shows an erosion surface in the range
ωu = 0.5−1.8, with several iso-integrity curves obtained by expressing the erosion
profiles in terms of remaining safe basin percentage. The profiles have the classical
qualitative behavior of the so-called “Dover cliff” erosion curve (Thompson and
Stewart 2002), which is characterized by a slow decrease of the uneroded volume of
the safe compact region, followed by a sudden fall down to zero. Near the two main
resonance frequencies, the surface shows two evident depressions, with the lowest
percentage values of residual integrity before the V peak and the sharpest decrease
of the profiles just after the peak, thus confirming what already noticed about the
differences between the profiles of Fig. 10a and b.
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Fig. 10 Erosion profiles at
ωu = 0.7 (a), at ωu = 0.8
(b) and at ωu = 0.9 (c). IM:
integrity measures

As a practical comment, it is important to point out that slight discrepancies
between the escape threshold of Fig. 11a and that of Fig. 3 are due to different
numerical procedures used in their realization. Thresholds of Fig. 3 are the result of
a continuation analysis, for very small variations of the control parameters, applied
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Fig. 11 Iso-integrity curves (a, b) and overall erosion surface (b)

to several local bifurcation points, which is able to catch small changes in the curves
trend thus furnishing quite accurate and reliable outcomes. Differently, thresholds
of Fig. 11a are obtained as envelope of the (discretized) integrity values deduced
from the construction of the erosion profiles. The latter, which are computationally
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Fig. 12 Comparison between local ni (dotted line) and global bd (continuous line) escape thresh-
olds in the ωu-U plane (a) and state-space (x, y) basin evolution at ωu = 0.8 for U = 0.03 and
U = 0.04 (b)

burdensome to build, have been realized at frequencies steps which are much wider
than the previous case, thus furnishing less refined, though reliable, results.

From theviewpoint ofAFMsafe operationmode, somematters are of considerable
interest as regards the evaluation of system theoretical and practical stability. The
first one is concerned with the comparison of the overall escape threshold considered
up to now and carried out bymapping the bifurcation diagrams (bd), to be considered
as a global stability boundary, with the escape threshold obtained by looking at the
response under numerical integration (ni) with fixed initial conditions (i.c.), to be
considered as a local stability boundary. The comparison is reported in Fig. 12a,
where the dashed threshold, related to numerical simulation, represents the forcing
amplitude valuesU , for several forcing frequencies, at which divergence of a specific
system response does occur. Of course, the ni escape values strongly depend on the
particular selection of the i.c. pair; here, values corresponding to the equilibrium
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position of the unperturbed system have been chosen. With respect to all of the local
ni boundaries to be possibly constructed by considering divergence from different
pairs of i.c. inside the safe basin, the global bd boundary represents the upper bound,
since it corresponds to safe basin annihilation. For the considered selection of i.c.,
the figure highlights significant differences between the two boundaries, the local
one lying below the global, with a gap of up to 25 times the ni absolute value.
Moreover, ni local minima occur at primary and secondary resonance frequencies,
while bd minima are shifted towards left (i.e., to nonlinear resonances) due to the
softening behavior of the system. The apparent underestimation of system stability
with ni ensues from the particular selection of the i.c. pair against the basin erosion
scenario. Focusing on fundamental resonance and looking, e.g., at ωu = 0.8, a slight
increase in the excitation amplitude (around the local escape vertex valueU = 0.03)
is seen to cause a basin boundary erosion which swiftly expands up to including the
initial position (black point in Fig. 12b), while leaving more than 50% of residual
integrity of the safe basin. In contrast, the actual basin annihilation (bd threshold)
occurs only at U = 0.74. This clearly highlights how, in terms of overall system
safety with respect to escape, consideration of the outcome of a single trajectory
may furnish misleading and too conservative information, unless being specifically
interested in the response ensuing from that particular set of i.c.

Anyway, even correctly referring to the global stability boundary in terms of
overall escape, the major problem in a safety assessment perspective ensues from the
associated total lack of information about the features of the underlying basin erosion.
Hence, in practical applications, it is particularly important to refer to integrity eval-
uations in order to determine acceptable frequency-dependent thresholds associated
with a priori safe design targets. Figure 13 shows four iso-integrity curves corre-
sponding to increasing target values in the fundamental resonance region. Selecting

Fig. 13 Comparison between theoretical (ni (dotted red line) and bd (continuous black line)) and
practical (residual integrity, gray lines) boundaries close to fundamental resonance, with detection
of some increasingly residual iso-integrity curves
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for instance the 30% residual safety target, the corresponding threshold allows us to
critically discuss the results furnished by numerical simulations (dotted red thresh-
old). Away from the nonlinear resonances (left of them, for the principal resonance
see Fig. 12a), though the ni thresholds underestimate system safety with respect to
the bd threshold, they are definitely unacceptable because of corresponding to very
low values of residual integrity (0−30%). Yet, the even more questionable point is
that ni thresholds correspond to a residual integrity which is strongly variable over
the control parameter range (see, e.g., the frequency range in between 0.7 and 0.8 in
Fig. 13)—and thus unreliable in overall terms—even though the associated thresh-
old may become more and more over conservative (thus corresponding to a higher
residual integrity) just where this is more needed. The above comparison highlights
the importance of a global analysis which solely accounts for the features of the
progressive decrease of the system practical safety due to the erosion up to its final
ending to the unwanted escape.

As a final remark, it is worth reporting here that the same analyses have been
developed for the system under the sole vertical, harmonic, excitation Vg (see Rega
and Settimi 2013). The results concerning the basin erosion process and the local
escape thresholds exhibit the same qualitative behavior as the one obtained under
parametric excitation, even if the absolute minimum of the total escape threshold is
shifted from the subharmonic resonance range to the primary one, consistent with
the well-known higher response amplitudes occurring at the latter for an externally
driven system.

Furthermore, the influence of combined horizontal scan excitation and vertical
beamexcitation (which coexist in the noncontactAFMoperationmode) on the overall
dynamics has been investigated, highlighting a negligible difference of results with
those obtained from the sole parametric excitation case, therefore confirming that, for
the chosen set of parameters values, the dual excitation analysis is not even necessary
in the primary resonance region in which the vertical excitation produces the major
effects.

3 AFM with External Feedback Control

The results presented in the previous section have highlighted that slight changes of
parameters and/or initial conditions of the AFM model can produce dramatic mod-
ifications of its dynamical response, leading to possible unstable oscillations which
restrict the operating range of the device. AFMs working in noncontact regime,
specifically, can undergo the unwanted “jump-to-contact” phenomenon, or escape
in dynamical terms, due to the atomic attraction between the cantilever tip and the
sample to be scanned, which can become stronger than the beam restoring elastic
forcemaking the equilibrium configuration unstable and producing contacts between
tip and sample responsible for errors in the topography process. To avoid these unde-
sirable effects and improve the microscope performances, several control techniques
have been proposed and successfully implemented in the last decades, mostly based
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Fig. 14 Microcantilever at reference position (a) and in a generic configuration (b); lines A and B
represent the reference positions of the microcantilever and the sample surface, respectively

on feedback control methods (Yamasue and Hikihara 2006; Arjmand et al. 2008;
Payton et al. 2011). Among them, a simple external feedback control can be imple-
mented in the continuum formulation of the noncontact AFM model presented in
Sect. 2. Thanks to the control of the cantilever base position (Fig. 14b), the procedure
works by keeping the system response (which can change due to the ensuing varia-
tions in the sample surface position) to a reference one (Fig. 14a), which represents a
stable periodic motion of the uncontrolled system under the same setting of operating
parameters. Following the model formulation reported in Settimi et al. (2015), the
continuum equations for the controlled system read

mūtt − [E I v̄rrr v̄r − Jz v̄t tr v̄r + �(1 + ūr )]r = Q̄u

mv̄t t − [E I (v̄rrr + v̄r v̄
2
rr ) + Jz(v̄t tr + v̄2

tr v̄r ) + �v̄r ]r = Q̄v

ξ̄t = k̄(v̄ref − v̄)

(8)

where ξ̄ (t) is the new control variable representing the distance of the fixed side of the
microcantilever from the horizontal reference axis (see Fig. 14b, which refers to the
nondimensional system), v̄ref (r, t) is the reference vertical displacement, obtained
from the uncontrolled system (ξ̄ = 0, Eq. (1)), and k̄ is a feedback constant. As done
for the uncontrolled model, the initial-boundary value problem of the distributed
parameter system is reduced to a system of two ODEs with one and a half degrees
of freedom through a Galerkin procedure. After neglecting some terms related to
internal feedback control and nonlinear geometry, and by considering the presence
of the sole horizontal parametric scan excitation (which is assumed to be harmonic),
the nondimensional reduced order system results

ẍ + α1x + α3x
3 = − �1

(1 + x + z − zs)
2 − ρ1 ẋ − μ1xUω2

u sinωut

ż = kg
(
xref − x

) (9)

where x(t) and z(t) are the tip transverse displacement and control variable, respec-
tively, and kg is the external feedback control parameter. Obviously, the system (9)
has to be completed by the addition of Eq. (4) (with Vg = 0 andUg = U sinωut) rele-
vant to the uncontrolled system, which furnishes the reference response xref essential
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Fig. 15 Time histories and trajectories in the phase plane of the uncontrolled (reference) system
with zs = 0 (dashed thick black line), of the uncontrolled system at zs = 0.03 (gray thin continuous
line) andof the systemat zs = 0.03with feedback control (continuous orange thick line), atωu = 0.9
and U = 0.5

for the control application. The control works when the response settles onto the
reference one, i.e., when z is equal to the expected value zs , as shown in the sample
case of Fig. 15. Here, the change of 3% in the tip–sample distance, represented by
the increase of the zs parameter with respect to the reference configuration zs = 0.0,
causes a modification in the system dynamical response, which passes from the ref-
erence 1-period solution (dashed thick black line in figure) to a high-period one (gray
thin line in figure). Starting from the latter configuration, the addition of the external
feedback control is able to change the system dynamics by avoiding the occurrence
of the highly periodic behavior; the controlled model, in fact, manages to properly
reproduce the reference 1-period solution (orange thick line in figure), and to set the
control variable z to the desired zs value, z = zs = 0.03.

The study of the system equilibria points out that they are not influenced by the
feedback control, as they result to be the same of the reference uncontrolled system.
However, due to the presence of control, the arise of a Hopf bifurcation locus reduces
the range of stability of the only acceptable stable equilibrium (the upper one in
Fig. 2b uncontrolled) also for very low values of the feedback parameter kg . For the
parameters choice (7), the asymptotic stability of the equilibrium solution occurs
only for 0 < kg < 0.00223 (Settimi et al. 2015).
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Fig. 16 Local bifurcations map and overall escape threshold in the frequency-amplitude plane
of parametric scan excitation for kg = 0.001. Gray area: region of stable reference response of
the controlled system; SN (gray lines): saddle-node bifurcation; T (thick green lines): transcritical
bifurcation; TR (thick red lines): torus bifurcation; SpPD (black lines): supercritical period doubling;
SbPD (black dotted lines): subcritical period doubling. Continuous lines: bifurcations referred to
P1 solutions; dashed lines: bifurcations referred to P2 solutions

3.1 Local Bifurcations and Response Scenarios

In order to investigate and verify the overall effects of the control introduction on
the system behavior, a comprehensive analysis of its dynamical response is carried
out and compared with the results already obtained for the uncontrolled system in
Sect. 2.2 (Settimi and Rega 2016c). For the set of parameters values reported in (7),
Fig. 16 summarizes the system dynamics under variation of the forcing amplitude
U , with identification of the different local bifurcation thresholds. The local bifur-
cation loci which represent the escape thresholds for the underlying uncontrolled
system (i.e., saddle-node (gray) and period doubling (black) thresholds in Fig. 16)
are present also in the controlled case, but they do not correspond to the overall
stability boundaries anymore. The control introduction in the model, in fact, causes
the birth of new thresholds of torus (or Neimark-Sacker) bifurcation (TR) and of
transcritical bifurcation (T)—the latter always appearing at much higher amplitudes
than the former—which considerablymodify the system stability region. In the lower
frequencies range up to the fundamental resonance (ωu = 0.835 = ω1), the system
escape threshold is governed by the torus bifurcation of the nonresonant 1-period
(P1L, i.e., low-amplitude) solution which occurs before the saddle-node governing
the onset of escape in the uncontrolled case, while the transcritical bifurcation of the
resonant 1-period (P1H, i.e., high amplitude) solution occurs before the period dou-
bling sequence which instabilizes the response of the uncontrolled case. For higher
frequencies which include the principal resonance (ωu = 1.67 = 2ω1), the system
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Fig. 17 Bifurcation diagrams at ωu = 0.8 for increasing forcing amplitude U for the controlled
system with zs = 0.01 and kg = 0.001. Black curves: 1-period solutions corresponding to those of
the reference system; green curves: new 1-period solutions. P1L: nonresonant 1-period solution;
P1H: resonant 1-period solution; P1′/P1′′: new 1-period solutions; T: transcritical bifurcation; TR:
torus bifurcation; SN: saddle-node bifurcation

shows the coexistence of 1-period and 2-period solutions—the latter governing the
nonlinear response in the neighborhood of the 1/2-subharmonic resonance, as for the
reference system—which become unstable via a couple of period doublings and a
torus bifurcation substituting the period doubling, respectively.

It is worth underlining that the stable region of Fig. 16 refers to system solutions
for which the feedback control works properly, i.e., stable 1-period responses of the
type

(
xref , zs

)
, such as the nonresonant one (P1L) obtained for the forcing frequency

ωu = 0.8 before the torus bifurcation (TR) and the P1H solution delimited by two
transcritical bifurcations (T points) marked in the sample bifurcation diagram of
Fig. 17. However, the latter becomes stable only after the system has experienced a
region of instability characterized by unbounded responses (white tongues inside the
stable region in Fig. 16), a fact that makes it unsafe with respect to possible variations
of the operational parameters. According with the control efficiency, stable motions
exhibited by the system that do not settle onto the reference one are considered
as unwanted outcomes and thus out of the stability region. This is the case, for
example, of the new 1-period solution P1′ born from the transcritical bifurcations T
(represented with green lines in Figs. 17 and 18), which is a high-amplitude response
coexisting with the main ones and displaying a rich scenario of local bifurcations.
Indeed, bifurcation diagrams of the control variable z show that for these additional
solutions the system fails to reach the reference position (i.e., z = zs = 0.01, see the
right panel of Fig. 18a), actually making the z response periodic, so that they appear
as unwanted responses. The reported bifurcation diagramhighlights also the presence
of stable quasiperiodic solutions arisen from the torus bifurcations (Fig. 17), which
can be numerically detected and for which the control variable z does not actually
reach the expected position zs = 0.01 (see Poincarémap of the z variable of Fig. 18b).
Note that the quasiperiodic solution exists up to the occurrence of the saddle-node
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Fig. 18 Phase portraits and Poincaré maps of 1-period solutions at U = 0.01, kg = 0.001 and
ωu = 0.8: stable P1L solution (black), new stable P1′ solution (gray) (a). Phase portraits and
Poincaré map of stable quasiperiodic solution atU = 0.036 andωu = 0.8 after the torus bifurcation
(b)

bifurcation that makes the reference solution disappear; since it represents the input
for the numerical solution of the controlled system, this local bifurcation marks also
the death of the stable quasiperiodic response.

Figures 16 and 17 are obtained for low values of the feedback control kg; indeed,
it is interesting to investigate the influence of the increasing feedback control param-
eter on the stability of the main periodic solutions, since it is known that changes in
such parameter can strongly modify the system response. Obviously, it must be taken
into account that its maximum acceptable value corresponds to the one instabiliz-
ing the system equilibrium, i.e., kg = 0.00223. Thus, focusing around fundamental
resonance, several behavior charts for increasing kg are reported in Fig. 19, to be
compared with the one obtained for the uncontrolled system (i.e., kg = 0, Fig. 19a).
Figure 19b shows the appearance of an unstable tongue delimited by the new torus
and transcritical bifurcation thresholds which occur for low values of the forcing
amplitude U , and even for weakly controlled systems. With the control introduc-
tion, in fact, the stability of the nonresonant P1L solution is reduced by the torus
threshold, while the resonant P1H response loses its stability for low values of the
forcing amplitudeU , returning stable only after the transcritical bifurcation (Fig. 17).
As a consequence, the typical triangle region below the V vertex displayed by the
uncontrolled systemwith the coexistence of stable P1L and P1H solutions is not only
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Fig. 19 Behavior charts in the ωu-U plane around fundamental resonance for kg = 0 (a), kg =
0.001 (b), kg = 0.002 (c) and kg = 0.01 (d)

reduced by the torus curve, but displays the presence of the sole nonresonant solu-
tion, up to its complete disappearance for higher kg values. For higher values of the
feedback control parameter (Fig. 19c), an unstable region confined by a torus bifurca-
tion (TRH) arises below the upper transcritical threshold, and expands as the control
increases. Simultaneously, the torus bifurcation which unstabilizes the P1L solution
occurs for decreasing values ofU . After that, stability regions reduce to narrow strips
of existence of stable P1H solution, associated with very limited ranges of forcing
amplitude U (see behavior chart at kg = 0.01 of Fig. 19d). All over Fig. 19, note
that the frequency value ωu = 0.8358 marks the disappearance of the P1L solution,
hence for higher frequencies, the P1H solution becomes the sole 1-period solution
for the system and its “high-amplitude” connotation becomes unnecessary (as for
the reference system, see Fig. 6 and relevant comments); nevertheless, for the sake
of readability of the charts its label has been kept unchanged.

To summarize the results concerning the controlled system, and in view of easily
comparing them with the outcomes of the uncontrolled one (Sect. 2.2), the behav-
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Fig. 20 Behavior chart in the ωu-U plane with detection of the overall escape thresholds for the
controlled (kg = 0.001, orange line) and uncontrolled (kg = 0, black line) systems under parametric
excitation. Dark gray area represents the stability region of the controlled and uncontrolled systems
and light gray area represents the stability region of the sole uncontrolled system

ior chart in the frequency-amplitude plane is shown in Fig. 20, where the overall
escape thresholds of the two systems (controlled and uncontrolled) together with
the detection of the corresponding stability regions are reported. The most evident
effect concerns the reduction of the dynamical stability of the system entailed by the
external feedback control, mostly around the main resonance frequencies, i.e., ω1,
2ω1 and ω1/2.

In the close neighborhood of these values, in fact, the feedback control causes
the onset of instability tongues which dramatically decrease the escape value of the
forcing amplitude, with reductions of about 99.9% around the fundamental (primary)
resonance, of 99.4% around the principal (subharmonic) resonance and of about 94%
around the superharmonic resonance frequency. This effect can be explained with
the fact that the close proximity to the resonance frequencies leads to a substantial
increase of the response amplitude of the resonant periodic solutions, that the feed-
back control is unable to dominate. In these regions, therefore, the escape threshold
of the controlled system is governed by the nonresonant responses, which become
unstable for considerably lower values of the forcing amplitude. Furthermore, the
escape threshold minima of the controlled system are shifted towards frequency
values related to the system natural frequency ω1 (i.e., ω1/2, ω1, 2ω1), since the
nonresonant periodic solutions are not affected by the softening effect of the nonlin-
ear resonance (as, in contrast, happens for the resonant solutions which govern the
escape profile of the uncontrolled system).

It is important to remember also that for the controlled system the stability region
does not include all the stable periodic responses, but only those associated with
the reference periodic solution of the uncontrolled system, on which the control
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works properly. This causes an additional reduction of the limiting values of forcing
amplitude. In terms of extent, this is evident particularly around the 2ω1 frequency,
where the escape boundary of the uncontrolled system is governed by the 2-period
response representing the main reference periodic solution for the whole range of
high-frequency values which, however, the control fails to correctly reproduce.

It is worth noting that the aforementioned response features are equally present
both in the parametrically forced system herein summarized and in the externally
forced one which could be considered, in the uncontrolled (see Eq. (4)) or controlled
case, under vertical excitation of the microcantilever support. Furthermore, the qual-
itative behavior of the escape threshold is not modified by the control activation, and
therefore maintains the typical features of systems under parametric (external) exci-
tations, with V-shaped profiles around resonance regions and the absolute minimum
at principal (fundamental) resonance, thus confirming that the applied control acts on
the system irrespective of the forcing type. From a practical point of view, the high-
lighted behaviors have detrimental implications for AFM operation, as they entail
limiting the range of both the forcing amplitude and the feedback control parameter to
low values to ensure the effectiveness of control. Moreover, they suggest to select the
low-amplitude solution as the reference one, since the control of the high-amplitude
solution is effective only in limited regions of the parameter space, so that it would
imply a very careful choice of the operational settings.

Finally, the detrimental effect of control on the system stability can be highlighted
also when investigating the dynamical behavior as a function of system intrinsic
parameters, e.g., the atomic interaction parameter �1 governing the order -2 term of
the equation ofmotion and representing themost significant system nonlinearity. The
results, reported in Fig. 21a to be comparedwith those of Fig. 8, show that the addition
of control into the model (kg = 0.001, Fig. 21), also in the �1-U plane, as already
seen in the ωu-U plane, causes the disappearance of the region of coexistence of the
P1 solutions with the lowering of the escape boundary of the P1L response due to the
birth of a new torus TRL threshold. However, the control presence affects mostly the
P1H solution, which in the uncontrolled system was confined by the period doubling
threshold PDH; the onset of a new transcritical locus (TH) and of a new torus one
(TRH) significantly reduces its stability rangewhich passes from�1 ∈ [0.127, 0.149]
to�1 ∈ [0.1305, 0.1313] at a forcing amplitude ofU = 0.0005. Notwithstanding the
small value of the feedback control gain (kg = 0.001), this prevents from operating
the AFM for atomic interaction values (e.g., tip material choice, material of the
sample to be possibly scanned) slightly higher than the reference one (�1 = 0.1, see
the comparison between the uncontrolled and controlled responses of Fig. 21b for
�1 = 0.12), also with nearly vanishing excitation amplitudes, thus furnishing further
practical information of design interest as regards proper AFM operation settings.
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(a)

(b)

Fig. 21 Behavior chart in the �1-U plane for ωu = 0.7 and kg = 0.001 (a); time histories and
trajectories in the phase planeof the uncontrolled (reference) system (black line) andof the controlled
system (orange line) at �1 = 0.12 and U = 0.12 (b)

3.2 Global Dynamics and Integrity

As previously stated, the investigation of the dynamical integrity of a system when
varying some control parameter is strictly related to the definition and choice of
specific concepts and tools, namely the safe basin and the integrity measure. From
what said in the former Sect. 3.1, it follows that the safe basin for the AFM system
with external feedback control must include the sole solutions for which the control
procedure works properly, namely the nonresonant (i.e., low-amplitude) 1-period
solution around the fundamental frequency. If compared with the reference system
(Sect. 2.3), in which the safe basin coincides with the potential well, the system safe
basin results to be strongly reduced by the control presence into the model, as it will
be described in detail hereinafter.

Notwithstanding the considered minimal (single-mode) approximation of the
microcantilever dynamics, the controlled system is five-dimensional in the state
space, as it is defined by Eqs. (9) and (4), so that understanding and representing the
relevant attractor-basin portraits becomes rather difficult. Therefore, to obtain read-
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able and interpretable results, analyses are accomplished by systematically assuming
that the initial conditions of the displacement variables of the controlled system are
the same of the uncontrolled one, i.e., x(0) = xref (0), y(0) = yref (0)—which also
corresponds to considering situations for which the control is more likely to work—
thus reducing the basin to three dimensions. Based on this, the erosion evolution is
investigated constructing 2D cross sections of the five-dimensional basins of attrac-
tion with fixed initial conditions of the control variable z.

In a comparison perspective, the tools selected to build the erosion profiles are
the same already used to analyze the dynamical integrity of the uncontrolled system,
i.e., the global integrity measure (GIM) and the integrity factor (IF) as integrity
indicators, and x ∈ [−0.3, 0.3], y ∈ [−0.65, 0.25] as phase space window.

Also in this case, normalization has been performed with respect to the integrity
measure calculated for the reference safe basin of the unforced system (i.e., for
U = 0), so that GIM and IF are dimensionless numbers.

The evolution of the system safe basin is analyzed for increasing forcing ampli-
tude U , with fixed control parameter zs (equal to 0.01), which is related to the
distance between microcantilever tip and sample surface, and with fixed initial con-
dition of the control variable z(0) = 0. Several cross sections of basins of attraction
in the (x = xref , y = yref ) plane are built for different forcing frequencies around
the fundamental resonance (ωu = ω1) region, and the results are compared with
those already obtained for the uncontrolled system presented in Sect. 2.3 to evaluate
the influence of control on the dynamical safety of the system (Settimi and Rega
2016b). As in Fig. 9, in Fig. 22 the basins of attraction of the controlled system in
the (x = xref , y = yref , z = 0) plane are reported for increasing values of the forc-
ing amplitude and for three forcing frequencies exemplifying the system behavior
around the fundamental resonance, i.e.,ωu = 0.7,ωu

∼= ω1 = 0.8 andωu = 0.9. The
projection of the relevant attractors is marked and the z value at which each attractor
settles is indicated. To better frame the following global results refer also to Fig. 19b.

The most evident consequence of the control presence is the generalized increas-
ing of the erosion due to the enlargement of the basin of the unbounded solution
(white basin in Fig. 22), which develops at the main detriment of the nondominant
responses. In particular, with respect to the uncontrolled case (Fig. 9) for frequencies
lower than the resonant one (Fig. 22a), the basin of the resonant solution disap-
pears, as well as the basins of the high-period solutions for ωu values higher than ω1

(Fig. 22c). At this frequency,moreover, the feedback control is able to properly repro-
duce the 1-period solution only in a confined range of the forcing amplitude, after
which the periodic responses depicted by the system cannot be considered accept-
able anymore. This is highlighted by the z values reported in each basin section of
Fig. 22c, indicating the z planes which the attractors belong to; after the critical value
U = 0.598 (corresponding to a transcritical bifurcation) the stable solutions do not
coincide with the reference ones (i.e., z �= zs = 0.01), confirming the bad control
operation. Near the fundamental resonance (Fig. 22b), the control causes the onset
of tongues of the unbounded solution basin (white) inside the potential well, whose
penetration causes the separation of the resonant/nonresonant basins for low values
of the forcing amplitude, and whose development occurs to the detriment of the
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nonresonant basin, which is strongly and swiftly reduced. Such behavior is peculiar
of the system with feedback control and modifies the topological scenario of the
basins erosion in the close proximity of the resonance frequency; for the controlled
system, in fact, the disappearance of the nonresonant basin is caused by the erosion
produced by the unbounded basin, while in the reference case (Fig. 9b) it occurs by
replacement with the resonant basin later on eroded by the unbounded one, without
penetration of the latter, which enlarges starting from the outer edge of the potential
well.

Remembering the bifurcation diagrams of Fig. 17, which indeed well samples the
general behavior of the system, it is evident that the basin of attraction of the resonant
solution corresponds to different solutions if referred to the controlled system or to
the uncontrolled one. In particular, in the controlled case, it represents the new P1′
solution basin for low values of the forcing amplitude U (less than 0.1, i.e., for all
red basins in Fig. 22b, at ωu = 0.8), while it corresponds to the same P1H solution
of the reference system, with a proper operation of the control technique, for high
values of U where, however, the basin has been already meaningfully eroded.

This can be understood by referring to the 3D (x = xref , y = yref , z) phase space;
here, the basins reported in Fig. 22b correspond to (x = xref , y = yref ) sections of the
five-dimensional basin at z = 0.While for the nonresonant basin the attractor belongs
to a parallel section at z = zs = 0.01, as expected, the attractor of the resonant basin
fails to reach the same section, and settles onto a plane with different (and often
negative, see Fig. 22) z, as shown in Fig. 23, which refers to the case U = 0.01.
Note that the z = zs = 0.01 plane in the figure corresponds to the phase plane of the
uncontrolled reference system, so that the cross section of the 5D controlled basin
of attraction in this plane coincides with the second picture of Fig. 9b (Sect. 2.3).

To quantify the erosion process of the system safe basin illustrated in Fig. 22, the
relevant erosion profiles obtained by means of GIM and IF measures are reported
in Fig. 24 and compared to those of the uncontrolled system (black curves). The
reduction of the safe basin to the sole 1-period dominant basin causes a lowering
of the profiles in the whole range of forcing amplitude, and for all the frequencies
analyzed, however with meaningful differences. At ωu = 0.7 (orange profiles of
Fig. 24a), the erosion develops smoothly as in the reference case, with not even the
initial sudden fall due to the escape tongue therein separating the outer resonant
basin from the nonresonant one. This feature is worthily kept, at this frequency, also
at higher excitation amplitudes, as highlighted by the nearly constant intervals in
between the successive (orange) iso-GIM curves of Fig. 25. In this sense, despite its
slightly lower integrity level, the system with feedback control turns out to be more
robust than the uncontrolled one with respect to possible perturbations. Looking
at the behavior at ω = 0.9, (orange profiles of Fig. 24c), on the contrary, the limit
value U = 0.598, responsible for the birth of improper new solutions, causes the
collapse of the profiles from 50 to 0% (consistent with the strong packing of the
corresponding iso-GIM curves of Fig. 25), making the feedback controlled system
particularly dangerous when working around these high-amplitude values. Around
the resonance, conversely, due to the fact that the safe basin of the controlled system
is reduced to the sole, swiftly reduced, nonresonant one, the fall down of the erosion
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Fig. 22 Basins cross sections with projection of the relevant attractors in the (x = xref , y =
yref ) plane for the controlled system (z = 0, zs = 0.01, kg = 0.001), at ωu = 0.7 and U =
0/0.006/0.01/0.1 (a), at ωu = 0.8 and U = 0/0.01/0.03/0.1 (b), at ωu = 0.9 and U =
0/0.5/0.65/0.75 (c). Green basin: P1L (P1 at ωu = 0.9) solution; purple basin: P1′ solution; light
green basin: P1′ solution at ωu = 0.9; blue basin: P1∗ solution at ωu = 0.9; black basin: quasiperi-
odic solutions; white basin: unbounded solution. The reported circles represent the IF measures for
the in-well safe basin
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Fig. 23 Basins of attraction and trajectories ending up to the two attractors in the (x = xref , y =
yref , z) space at ωu = 0.8 and U = 0.01. Green basin/blue trajectory: nonresonant P1L solution;
purple basin/trajectory: new resonant P1′ solution

profiles relevant to the systemwith feedback control occurs for very low values of the
forcing amplitude, and the controlled system results to be muchmore dangerous than
the uncontrolled one. A further contribution to the robustness reduction is furnished
by the way the erosion develops as the amplitude increases. In fact, it involves mostly
the formerly rolled part of the nonresonant basin, which becomes very fractal, thus
causing a sharp decrease of the GIM profile, while affecting the basin compact part
(quantified by the IF measure) in a minor way.

As a summary of the obtained results, the iso-integrity curves in the ωu-U plane
are shown in Fig. 25, i.e., frequency-dependent thresholds with constant residual
integrity which actually govern the system practical safety, to be compared with
those obtained for the system in the absence of control.

The overall outcomes highlight that around the resonance frequency the con-
trolled systemundergoes a severeworsening of its practical stability, with the residual
integrity being reduced from 90 to 10% in a very narrow range of forcing amplitude
values (�U = 3.6 × 10−3 at ωu = 0.82 ≈ ω1). Moreover, analyzing the evolution
of the iso-integrity curves a shift in their lowest peak can be recognized, with the
minimum value moving right from the nonlinear resonance frequency to the natural
one, as already observed for the escape threshold of Fig. 20. Both effects are asso-
ciated with the system softening behavior that prevents the response from attaining
the higher amplitude resonant solution, which is characterized by too low values of
residual integrity. This is similar to what observed also in other softening systems,
e.g., the MEMS capacitor (Alsaleem et al. 2010), where it has been shown also
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Fig. 24 Erosion profiles at
zs = 0.01 of the safe basin
of the controlled system
(thick orange, corresponding
to nonresonant solution) and
of the uncontrolled one
(black, corresponding to
union of solutions), obtained
evaluating GIM (solid lines)
and IF (dashed lines)
measures, at ωu = 0.7 (a),
ωu = 0.8 (b) and ωu = 0.9
(c)
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Fig. 25 Residual iso-integrity curves of the system safe basin for the controlled (z = 0, zs = 0.01,
orange solid lines) and reference (z = zs = 0.01, black dashed lines) systems

responsible for the occurrence of practical escape (therein corresponding to the pull-
in phenomenon) at much lower excitation amplitudes and higher forcing frequencies
in experimental conditions than in theoretical conditions (see also Rega and Lenci
2015).

Note that the loss of stability due to the control presence is narrower in the left
side of the chart and wider in the right, due to the fact that the P1H solution governing
the system response in the latter range is no longer acceptable for the system.

Until now, the attractors robustness and the basin erosion of the systemwith exter-
nal feedback control has been investigated with respect to variation of external action
parameters (i.e., horizontal scan excitation and frequency). Yet, it is also important
to verify the practical integrity of the system when varying some intrinsic parameter,
like the distance between microcantilever tip and sample surface represented by the
control parameter zs . Due to its dependence on the roughness of the sample to be
scanned, this parameter is highly variable during the AFM scanning operation, and
the analysis of its effect on the global behavior of the system is particularly important
to assess the actual safety in operating conditions.

For this reason, several bidimensional sections of the system basins of attraction
in the (x = xref , y = yref ) plane are constructed for increasing values of zs , fixing
the initial condition of the control variable z = 0 and the forcing amplitude at U =
0.01, which is indeed a low value, and for different forcing frequencies near the
fundamental resonance. Note that varying zs in the theoretical model corresponds to
implicitly accounting for the actual time-varying distance during the scan operation.

As a remark, it can be noted that in this case, the phase plane corresponding to
the reference uncontrolled system is set to z = zs = 0, differently from what done
in the previous Figs. 22, 23, 24, and 25 where the uncontrolled plane is defined
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Fig. 26 Residual iso-integrity curves for the controlled system, at U = 0.01

as z = zs = 0.01. Since the reference system is obtained from the controlled one
when Eqs. (9) and (4) decouple, i.e., when z = zs for each value of zs , the different
choice between the two integrity analyses is due to reasons of consistency. Indeed,
while previously zs was a fixed parameter, equal to zs = 0.01, here its variation is
investigated, so that it is natural to determine the reference plane as the one for which
zs equals the fixed value of the variable z initial condition, i.e., zs = z = 0.

The outcomes highlight that when the tip–sample distance increases (i.e., for
increasing zs) the basin of the unbounded solution enlarges inside the potential well,
to the main detriment of the (solely controllable) nonresonant solution, whose basin
of attraction is dramatically reduced up to vanishing. The negative effect of the
increasing tip–sample gap on the dynamical safety of the system is summarized by
the iso-integrity curves reported in Fig. 26, where the resonance region proves to be
critical also with respect to variation of the tip–sample distance. Around ω1, in fact,
the dynamical integrity of the controlled solution is drastically reduced as the gap
increases, decreasing up to ≈10% for zs = 0.01.

Finally, it is of interest to analyze the combined effect of the two main system
intrinsic parameters, i.e., the zs parameter and the atomic interaction parameter rep-
resented by �1.

Analyzing and quantifying the basin evolution as a function of zs at different
values of the atomic interaction parameter provides the erosion profiles of the safe
basin in Fig. 27. They confirm that an increase of either parameters has an evident
negative effect on the system robustness. This information has an important practical
consequence, as indicates that a rough sample surface and/or a strong atomic interac-
tion between tip and sample represent dangerous situations for the application of the
external feedback control to an AFM, which could lead to errors in the topography.
Moreover, for a given acceptable value of residual integrity, the zs value available
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Fig. 27 Erosion profiles of the safe basin as a function of zs at U = 0.01 and ωu = 0.7, for
increasing values of �1: �1 = 0.08 (yellow lines), �1 = 0.1 (orange lines), �1 = 0.11 (red lines),
�1 = 0.12 (dark red lines). Dashed lines: IF measure; continuous lines: GIM measure

for control in safe operating conditions becomes smaller as the atomic interaction
increases. Overall, in a design perspective, useful hints are obtained to calibrate the
tip–sample interaction (e.g., tip material choice) depending on the sample charac-
teristics and roughness, in order to guarantee a proper safety level during the scan
operation.

4 AFM with Global Control

The results presented in the previous Sect. 3 have shown that, while being generally
effective in realizing the specific aim for which it is designed, the insertion of an
external feedback control in a noncontact AFMmodel causes a generalized reduction
of the stability region and a dangerous decrease of system safety with respect to the
unwanted jump-to-contact phenomenon. Yet, from a practical stability perspective,
an acceptable system-dependent residual integrity is needed to guarantee secure
AFM operation since it is nowadays well known that the safety of a nonlinear system
depends not only on stability of its solutions but also on the uncorrupted basins of
attraction surrounding them.

Following this assumption, and focusing on the preservation of dynamical
integrity, it is worth analyzing whether a non-feedback control technique, specif-
ically aimed at favorably affecting a global bifurcation event which triggers basins
erosion, can also work for the AFM system and reduce the basin erosion which leads
to the loss of safety. The method (Lenci and Rega 2004) is based on the optimal
modification of the shape of the reference harmonic excitation in order to shift the
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occurrence of the global event (i.e., homo/heteroclinic bifurcation of some saddle)
responsible for the sudden fall down of the dynamical integrity profiles, thus obtain-
ing an overall control of the dynamics and an enlargement of the system safe region
in parameters space. When the global bifurcation triggering erosion involves the
manifolds of the sole hilltop saddle of the system, then its (approximate) occurrence
can be determined by means of the Melnikov method, based on the interpretation
of the nonlinear system as perturbation of the relevant Hamiltonian one, and the
subsequent determination of the amplitude and phase of the controlling superhar-
monics by solving an optimization problem. This analytical control procedure has
demonstrated its effectiveness in increasing the system safety of several different
mechanical systems, such as the Helmholtz oscillator (Lenci and Rega 2003a), the
Duffing oscillator (Lenci and Rega 2003b), the rigid block (Lenci and Rega 2005)
and a reduced model of MEMS microbeam (Lenci and Rega 2006), which have
allowed to verify the influence on the erosion of some main mechanical features,
like smoothness, stiffness, and symmetry. With reference to the latter, two different
approaches have been proposed, the “one-side” control, which is very effective but
acts on a single global (homoclinic) bifurcation thus being particularly useful for
asymmetric systems, and the “global” control, which is able to increase simultane-
ously two homo/heteroclinic bifurcations in case of two (or more) potential wells or
heteroclinic loop involving two saddles. In the examined cases, the analytical proce-
dure has demonstrated its ability in delaying the erosion also in cases where the loss
of safety is likely due to the presence of secondary global bifurcations involving other
internal saddles. However, when other secondary saddles play a major role in the
development of the basins erosion, and when the profile fall down occurs away from
the hilltop bifurcation, the control technique has to be applied by developing a purely
numerical procedure to define the optimal shape of the controlling superharmonics.

4.1 Analytical Control of Homoclinic Bifurcation of Hilltop
Saddle

In order to apply the analytical procedure, reference has to be made to the underlying
Hamiltonian system (see Eq. (6) and Fig. 2 of Sect. 2.1), from which the expression
of the homoclinic orbit yh(t) of the hilltop saddle SH , reported also in Fig. 28, can
be derived (Settimi et al. 2016):

yh(x) = dxh
dt

= ±√
2(V (xSH ) − V (x)) (10)

where xSH is the coordinate of the hilltop saddle. The integral (10) cannot be solved
in closed form but has to be computed numerically. The curve borders the single
potential well, which includes the bounded periodic solutions and represents the
safe domain for noncontact AFM operation, separating it from the outer region of
unbounded solutions leading to the jump-to-contact phenomenon.
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Fig. 28 Qualitative behavior of the stable (WS) and unstable (WU ) manifolds of the hilltop saddle
for the Hamiltonian system (gray) and the ε-perturbed, forced, damped system (black)

Due to the unperturbed nature of the Hamiltonian system, the homoclinic orbit
represents also the coinciding right unstable (Wu(SH )) and stable (Ws(SH )) mani-
folds of the hilltop saddle. When damping and excitation are added into the system
(6), the separation of the stable and unstable manifolds of the Hamiltonian system
occurs (see Fig. 28, where the (gray) homoclinic orbit is also plotted, for compari-
son), and their evolution can lead them to intersect or to remain disjoint depending
on the value of the excitation parameters. The critical situation of manifolds tan-
gency corresponds to the occurrence of a global homoclinic bifurcation, which can
be analytically detected by the classical Melnikov method. The control procedure
aims at shifting such bifurcation by optimally modifying the excitation shape, i.e., by
adding controlling superharmonics to the harmonic excitation of the system (4) with
Vg = 0 and Ug = U sinωut :

ẍ + α1x + α3x
3 + �1

(1 + x)2
= −ρ1 ẋ − xμ1ω

2
uU1

N∑

j=1

Uj

U1
sin( jωut + � j ) (11)

where U1 is the horizontal parametric-like reference excitation while Uj and � j are
the amplitudes and phases of the controlling superharmonics. In presence of weak
excitation and damping, the system (11) can be expressed as an ε-perturbation of the
Hamiltonian system (6):
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = y

ẏ = −α1x − α3x3 − �1
(1+x)2

+ε
(
−ρ1y − xμ1ω

2
uU1

N∑

j=1

Uj

U1
sin( jωut + � j )

) (12)

where ε is a smallness parameter. To the first order, the distance between the stable
(Ws(SHε)) and unstable (Wu(SHε)) manifolds of the perturbed system is furnished
by the Melnikov integral:

M(t0) =
∫ +∞

−∞
yh(t)

(
−ρ1yh(t) − xh(t)μ1ω

2
uU1

N∑

j=1

Uj

U1
sin( jωu(t + t0) + � j )

)
dt

= 2ρ1 I1 − 2μ1ω
2
uU1 I2(ωu)h(m)

(13)
where

I1 = −
∫ xSH

xA

yh(x)dx, I2( jωu) =
∫ xSH

xA

x sin
(
jωu

∫ x

xA

dr

yh(r)

)
dx

are integrals to be numerically computed, and

h(m) =
N∑

j=1

h j cos( jωut0 + � j ), h j = Uj I2( jωu)

U1 I2(ωu)

is 2π -periodic with zero mean value (m = ωut0). The tangency of the stable and
unstable manifolds, i.e., the occurrence of the homoclinic bifurcation, corresponds
to a simple zero of the Melnikov integral M(t0) = 0 for some t0:

U1,cr = ρ1 I1
μ1ω2

u |I2(ωu)|M ,

with

{
M = M+ = maxm∈[0,2π]{h(m)}, I2(ωu) > 0

M = M− = −minm∈[0,2π]{h(m)}, I2(ωu) < 0

(14)

Note that in the presence of the sole reference harmonic excitation ( j = 1) h1 = 1
and M = 1. To achieve the best control effect, the homoclinic tangency has to be
shifted to the highest possible value of the forcing amplitude, which corresponds to
the following optimization problem (Lenci and Rega 2003a):

Maximize min
m∈[0,2π]{h(m)}, I2(ωu) < 0

Minimize max
m∈[0,2π]{h(m)}, I2(ωu) > 0

(15)
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Fig. 29 Analytical bifurcation thresholds in the ωu -U1 plane. Black curve: reference harmonic
system; green thick curve: system with superharmonic h2 = 0.353553 (optimal)

The optimization can be achieved by properly choosing h j and � j , where j =
1, 2, 3, .., N is the number of superharmonics to be added to the system. To measure
the improvement obtainable with respect to the reference harmonic excitation, the
gain G is introduced: G = U1,cr/Uh

1,cr = 1/M , where Uh
1,cr represents the critical

amplitude for the reference harmonic system. Setting � j = 0, focus is paid to the
addition of one even superharmonic, i.e., j = 2, due to the asymmetric feature of
the system which calls for the application of the so-called “one-side” control. The
solution of the optimization problem (15) furnishes the value h2 = 0.353553, as its
minimum reaches the maximum value in h(m) = −0.707107, corresponding to the
maximal theoretical gainG = 1.4142 (Lenci and Rega 2004). The homoclinic bifur-
cation thresholds detected by means of the Melnikov method are reported in Fig. 29
in the excitation parameters plane (ωu , U1), for the reference harmonically forced
system (black curve), and for the systemwith one optimal controlling superharmonic
(green curve). The outcomes confirm that the control manages to shift the bifurcation
threshold to higher values of the forcing amplitude with respect to the harmonic case,
apart from the region around the “antiresonant” frequency ωu ≈ 1.03 at which the
threshold goes to infinity due to the first order nature of theMelnikov approximation.

The numerical detection of the hilltop manifolds validates the analytical results,
highlighting the ability of the optimal superharmonic in separating the stable (gray)
and unstable (green) hilltop manifolds, as shown in Fig. 30 at frequency values
before and after the fundamental resonance ω1 = 0.8357. It is worth noting that the
increase of the bifurcation threshold occurs for negative values of the amplitude of the
controlling superharmonic (see Fig. 34 forward), while positive amplitudes produce
a worsening effect of the global dynamical behavior. From an operational point of
view, the same result can be achieved by applying positive superharmonics with a
phase shift �2 = π .
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Fig. 30 Stable (gray) and unstable (green) manifolds of the hilltop saddle SH for the reference
harmonic system (a, c) and for the system with optimal superharmonic h2 = 0.353553 (b, d) at
Uh
1,cr = 0.001823 and ωu = 0.7 (a, b) and atUh

1,cr = 0.0027652 and ωu = 0.9 (c, d). Square point
identifies one of the manifolds tangency points

Fig. 31 Erosion profiles as a function of the forcing amplitude U1 for the reference harmonic
system (black) and for the system with optimal superharmonic (thick green), at ωu = 0.7 (a) and at
ωu = 0.9 (b). Dashed lines: profiles obtained with integrity factor (IF); continuous lines: profiles
obtained with global integrity measure (GIM)
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With reference to the main practical objective of the applied control, i.e., the
overall enlargement of the system safe region, the verification of the homoclinic
hilltop bifurcation shift has to be complemented by the investigation of the safe
basin evolution, the latter being carried out by the analysis of the system dynamical
integrity. In this respect, the safe basin is defined as the union of the classical basins
of attraction inside the potential well, and the integrity measures used to quantify
the erosion are the Global integrity measure (GIM) and the integrity factor (IF)
which work both well in this respect. Once the basins of attraction are numerically
obtained for increasing values of the forcing amplitude, and after quantification of
the basins integrity, the erosion profiles of Fig. 31 are built, for the system with
harmonic excitation (black curves) and for the one with optimal superharmonic
(green curves). The results highlight that the controlling superharmonic is not able
to improve the system integrity, i.e., to shift the profiles fall down to higher values
of the forcing amplitude, different from what observed in several other systems with
escape (Rega and Lenci 2008). Moreover, right of the fundamental resonance, the
controlled profiles result to be sharper than the harmonic ones in their final part
(see Fig. 31b), meaning that for high values of the forcing amplitude, the control
worsens the system robustness (this is anyway a well-known behavior, detected in
other literature systems (Rega and Lenci 2008)). The causes of this behavior are to
be sought in the significant distance, in terms of values of the forcing amplitude,
between the occurrence of the homoclinic bifurcation and the profile fall down,
as can be seen in Fig. 31. Focusing on the case ωu = 0.7 and observing the basins
evolution (not reported), in fact, it can be noted that, once the manifolds intersect, the
unbounded solution basinwhich surrounds the potential well starts penetrating inside
the well through fractal tongues from the outer edge. However, the safe basin erosion
develops very slowly and, when the amplitude approaches the value U1 = 0.0067
(numerically detected) corresponding to the profiles fall down, the positive effects of
the homoclinic bifurcation shift have been exhausted; in fact, at this value, the stable
and unstable manifolds of the hilltop saddle clearly intersect each other. Of course,
the same considerations hold at frequencies higher than the fundamental resonance
one, as well as, for both cases, the arise of competing basins of attraction before the
profiles fall down. Their appearance suggests the presence of other internal saddles
whose manifolds are responsible for the basins behavior inside the well, which,
however, has to be investigated with solely numerical procedures.

4.2 Numerical Control of Bifurcations of Secondary Saddles

4.2.1 Before the Fundamental Resonance Frequency

An accurate numerical investigation of the global bifurcation scenario of the AFM
model atωu = 0.7 is required to properly identify the global event responsible for the
reduction of system integrity. The results reported in Table 1 display the occurrence
of four different global bifurcations, involving stable and unstable manifolds of a
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secondary saddle internal to the potential well, in addition to the hilltop manifolds.
In particular, the arise of such secondary saddle S1 is related to the appearance, atU =
US1 = 0.001697, of the basin of attraction of the 1-period (resonant) solution inside
the former (nonresonant) basin, and its stable manifolds represent the smooth edges
in between the two basins. This event occurs just before the homoclinic bifurcation of
the hilltop saddle at U = Uhom1 = 0.001823, already detected and controlled in the
previous Sect. 4.1, and corresponding, from a phenomenological viewpoint, to the
beginning of the fractalization of the safe basin outer edge. At considerably higher
values of the forcing amplitude, at U = Uhom2 = 0.006375, the tangency between
the unstable left manifoldWu

l (S1) and the stable left manifoldWs
l (S1) of the in-well

saddle points out the occurrence of the left-side homoclinic bifurcation of the saddle
S1, which marks the beginning of the disruption of the smooth separation between
the basins inside the well, representing the starting point for the fractalization of
the resonant basin boundary inside the nonresonant one. As the amplitude slightly
increases, the left unstable manifold of the in-well saddle crosses the left stable one
and approaches the right stablemanifolds of both the in-well saddle (purple line in the
following Fig. 32) and the hilltop one (gray line), whose evolutions have developed
keeping them very close to each other.

At U = 0.006676, the two mixed-side tangencies (Wu
l (S1) ∩ Ws

r (S1) and
Wu

l (S1) ∩ Ws
r (SH )) occur almost simultaneously, corresponding to a homoclinic

bifurcation of the in-well saddle and to a heteroclinic bifurcation between the in-well
and hilltop saddles, respectively, reported in Fig. 32. They lead to the penetration
of tongues of the unbounded solution basin inside the potential well, which causes
the separation of the resonant and nonresonant basins (right panels of Fig. 32), and
consequently the strong reduction of the safe basin integrity highlighted by the sharp
fall down of the erosion profile. The described global bifurcations are marked on
the erosion profiles of the system safe basin in Fig. 33, confirming that the two last
bifurcations occur just before the profile sharp decrease, thus suggesting they are the
global events to be controlled for increasing the system safety.

To this aim, a fully numerical procedure is developed (Settimi and Rega 2016a),
starting from the numerical detection of the saddles and of the relevant stable and

Table 1 Main global events at ωu = 0.7

Harmonic amplitude Global event Saddle involved

0.001697 = US1 Onset of in-well saddle S1
0.001823 = Uhom1 Homoclinic bif.

Ws
r (SH ) ∩ Wu

r (SH )

SH

0.006375 = Uhom2 Homoclinic bif.
Wu

l (S1) ∩ Ws
l (S1)

S1

0.006676 = Uhom3 Homoclinic bif.
Wu

l (S1) ∩ Ws
r (S1)

S1

0.006676 = Uhet Heteroclinic bif.
Wu

l (S1) ∩ Ws
r (SH )

S1, SH
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ẋ
SH

W s
r

Wu
l

(e)

x

ẋ
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Fig. 32 Manifolds and basins at U = Uhom3 ∼= Uhet = 0.006676: enlargements during (U =
0.006676) (a–c) and after (U = 0.0068) (d–f) the bifurcation events. Left panels (a, d): hom3,
Middle panels (b, e): het . Gray line: stable manifold of SH saddle; green line: unstable manifold of
SH saddle; purple line: stable right manifold of S1 saddle; orange line: unstable right manifold of
S1 saddle; blue line: stable left manifold of S1 saddle; red line: unstable left manifold of S1 saddle;
square dot: bifurcation point

Fig. 33 Erosion profiles at ωu = 0.7, with detection of the main global bifurcations
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Fig. 34 Analytical (black line) and numerical (thick red line) thresholds of the homoclinic bifur-
cation hom1 ( Ws

r (SH ) ∩ Wu
r (SH )) as a function of the superharmonic amplitude U2/U1 (a);

Numerical threshold of the homoclinic bifurcation hom3 (Wu
l (S1) ∩ Ws

r (S1)) as a function of the
superharmonic amplitude U2/U1 (b)

unstable manifolds involved in the bifurcation to be controlled. Then, a proper region
in the state plane including candidate, and graphically handy, bifurcation points is
identified, and the computation of themanifolds distance along a proper (i.e., nonpar-
allel to one of the manifolds) direction is carried out via the arclength method. Once
one manifold has been numerically discretized, distances are computed starting from
each point of it and the minimum value is selected. The direction for calculating the
distance is chosen to be that of the unstable eigenvalue of the hilltop saddle, although
distances along other (rotated) directions have been also calculated to check the con-
sistency of the obtained results. Apart from obvious quantitative differences, the
outcomes have shown the same trend, thus validating the adopted choice. The proce-
dure is repeatedly implemented by varying the amplitude of the harmonic excitation
U1, until the calculated distance becomes equal to zero, warning that the tangency
of the manifolds (thus the global bifurcation) occurs. The application of the same
process is then carried out for different amplitudes of the controlling superharmonic,
i.e., various U2/U1 ratios in Eq. (11), assuming � j = 0 and j = 2, as done in the
analytical case illustrated in Sect. 4.1, thus considering the presence of one even
superharmonic (2ωu). The subsequent detection of the bifurcation threshold in the
U2/U1,U1,cr plane allows to finally determine the optimal superharmonic able to
shift the bifurcation to the highest value of the forcing amplitude.

To test the numerical control, the homoclinic bifurcation of the hilltop saddle
occurring at U1 = Uhom1 = 0.001823 has been investigated, since for it, the Mel-
nikov method already allowed to identify the value of the optimal controlling super-
harmonic (Sect. 4.1). The good agreement between the analytical and numerical
results shown in Fig. 34a confirms the ability of the numerical procedure in detect-
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Fig. 35 Erosion profiles for the uncontrolled system (black line) and for the system with optimal
superharmonic U2/U1 = −0.32 (thick green line)

ing the value of the superharmonic to be added to the system for maximizing the
delay of the global bifurcation.

Thus, the technique is applied to the bifurcations occurring just before the erosion
profile fall down, focusing the attention on the hom3 bifurcation, since it requires
the detection of the position and of the relevant manifolds of the sole internal saddle,
simplifying the implementation of the numerical procedure. The selected region in
the state plane is chosen to be x ∈ [−0.2, 0.2], ẋ ∈ [−0.3, 0.3], since it includes a
significant number of tangency points. The obtained bifurcation threshold for varying
amplitude of the controlling superharmonic is reported in Fig. 34b, and allows to
determine the new value of the optimal superharmonic, which corresponds to the
peak of the threshold occurring at U2/U1 = −0.32. It is worth noting that, in this
case, the whole bell of increased bifurcation thresholds is contained in a range of
amplitude values of the added superharmonic which are meaningfully lower than the
value of the reference harmonic amplitude, thus corresponding to a control suitability
also in terms of relatively low cost.

Once the optimal amplitude of the controlling superharmonic is detected, the
erosion profiles of the controlled system are realized and compared with those of
the uncontrolled one, to verify the effectiveness of the control in delaying the sharp
decrease of the dynamical integrity. Figure 35 confirms that, beyond delaying the
occurrence of the targeted homoclinic bifurcation, the numerical control is able also
to move the profiles fall down to higher values of the forcing amplitude, in this case
increasing the system safety of about 4%. This beneficial effect can be easily justified
by observing the influence of the control on the behavior of the basins of attraction.
With reference to the uncontrolled system (Fig. 32d, f), the optimal superharmonic
manages to avoid the manifolds intersection (see comparison between Fig. 32d, e
without control andFig. 36a, bwith optimal superharmonic), and entails the reduction
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Fig. 36 Manifolds and basins atU = 0.0068 for the systemwith optimal superharmonicU2/U1 =
−0.32 (a–c): left panel (a): hom3, middle panel (b): het . gray line: stable manifold of SH saddle;
green line: unstable manifold of SH saddle; purple line: stable right manifold of S1 saddle; orange
line: unstable right manifold of S1 saddle; blue line: stable left manifold of S1 saddle; red line:
unstable left manifold of S1 saddle

of the basins fractalization and the postponement of the penetration of the white
tongues of the unbounded basin inside the potential well, as highlighted comparing
Figs. 32f and 36c. As a consequence, the safe basin, i.e., the union of the resonant and
nonresonant basins taken into account by the IF measure, maintains its compactness
for a wider range of forcing amplitudes.

With reference to the outcomes presented in literature concerningdifferent dynam-
ical systems, it is worth observing that the presented analysis furnishes coherent and
acceptable results. In fact, for the AFM system investigated here, the improvement of
about 4% of the dynamical robustness is obtained with relatively low cost in terms of
controlling amplitude (U2/U1 = 0.32). Other literature systems are in linewith these
values: for an archetypalDuffing equation, the addition of one odd superharmonic has
demonstrated to succeed in reducing the scattered chaotic region of about 1% (with
U2/U1 = 0.8) (Lenci and Rega 2003c), while one even superharmonic has been able
to increase the saved region of about 5% (withU2/U1 = 0.4); moreover, in a micro-
electromechanical system (Lenci and Rega 2006) one controlling superharmonic has
proved to shift the relevant erosion profile of about 8% for U2/U1 = 1.6591 (which
is indeed a major costing amplitude), and of about 4% with U2/U1 = 0.5.

4.2.2 After the Fundamental Resonance Frequency

The numerical procedure previously described has a very general nature, and can
be applied to any kind of global bifurcation with the addition of any number of
superharmonics. To verify its versatility, the numerical control has been applied also
atωu = 0.9, a sample case of the systembehavior after the fundamental resonance, for
which the analytical control has shown to even deteriorate the safe basin robustness
by shifting the smoother part of the relevant erosion backward (see Fig. 31b of
Sect. 4.1).

Observing the erosion profiles at this frequency, reported in Fig. 37 for the sake of
clarity, it is evident that the sharp loss of robustness occurs for quite high values of the
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Fig. 37 Erosion profiles of the reference system at ωu = 0.9
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ẋẋẋ

(c)

Fig. 38 Manifolds and basins at ωu = 0.9 for U = 0.65 (a), U = Uhom = 0.686 (b), U = 0.75
(c). Purple line: stable right manifold of S1 saddle; orange line: unstable right manifold of S1 saddle;
blue line: stable left manifold of S1 saddle; red line: unstable left manifold of S1 saddle

harmonic forcing amplitude, highlighted by the red box in figure, after a long smooth
decrease, and the final fall down of the profile is definitely stronger than the one
detected atωu = 0.7 (Fig. 31a) swiftly leading to the zeroing of the systemdynamical
integrity. Also in this case, attention has to be focused on the sharp part of the profiles,
which marks the loss of safety for the system, so that the global bifurcation to be
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controlled has to be sought for amplitude valuesmuchhigher than that associatedwith
the homoclinic bifurcation of the hilltop saddle analytically determined (i.e.,Uh

1,cr =
0.0027652). A thorough investigation of the system global behavior allows to detect
the arise of an internal saddle, coinciding with the birth of a new basin related to a
competing1-period solution, at a very large excitation amplitude (U = 0.604).At this
value, the manifolds of the hilltop saddle are already fully intersected (not reported
in the next figures for readability reasons), suggesting a crucial role of the internal
saddle in the loss of robustness of the system. In fact, the relevant left manifolds
Wu

l (S1) and Ws
l (S1) undergo a homoclinic bifurcation at U ∼= 0.686, that from a

phenomenological viewpoint corresponds to the basins separation inside the potential
well, leading to a strong decrease of the system dynamical integrity. The overall
behavior can be recognized in Fig. 38, where manifolds and basins of attraction
are reported before, during, and after the homoclinic bifurcation Wu

l (S1) ∩ Ws
l (S1).

Figure 39a is a zoom of the upper panel of Fig. 38b around S1. By applying the same
procedure of the case ωu = 0.7, one even superharmonic is applied to the model.
However, this time the ability of control in preventing the homoclinic bifurcation,
which is apparent in the separation of the left manifolds of the S1 saddle shown in
Fig. 39b for a very lowvalue of the controlling amplitude, is accompanied by a critical
modification of the behavior of the corresponding right manifolds. As highlighted by
the purple and orange lines in Fig. 39b, in fact, they intersect each other causing the
occurrence of another homoclinic bifurcation Wu

r (S1) ∩ Ws
r (S1), which obviously

neutralizes the beneficial effect achieved on the left manifolds. This result can be
easily explained by observing that in this case, as already noticed in commenting
Fig. 9c, despite the overall asymmetric one-well potential of the system, the in-well
basins of attraction for high values of the forcing amplitude are organized in the
state plane so as to assume a local topology similar to that of a symmetric two-well
potential, which is now playing the role of safe basin to be optimally controlled by
adding odd superharmonics (so-called “global” or, herein better, “two-side” control
(Lenci and Rega 2004)). For this reason, to apply the global control at ω = 0.9,
one odd superharmonic (3ωu) is added to the harmonic forcing, unlike what done at
ω = 0.7. The implementation of the numerical procedure furnishes the bifurcation
threshold of the homoclinic bifurcation for different values of the amplitude ratio
U3/U1 (Fig. 40), whose peak occurs forU3/U1 = −0.45 and represents the optimal
value of the controlling amplitude to be applied (Settimi and Rega 2017).

The effects of the control application on the basins evolution are reported in
Fig. 41, to be compared with those of the reference system in Fig. 38; the evolution
of the manifolds is significantly smoother, for both the right and left manifolds of the
internal saddle S1, confirming the ability of the “two-side” control in modifying the
behavior of both the wells (basins in this case) governed by the considered saddle.
Moreover, the robustness of the (green) dominant basin is increased by considerably
delaying the arise of the competing 1-period solution (blue basin), and consequently
the basin separation. As a consequence, the fall down of the “new” safe basin profile
is shifted to higher values of the harmonic forcing amplitude, enlarging the range of
U values in which the system safety is guaranteed, while leaving the qualitative trend
of the profiles substantially unchanged, as can be observed by comparing the green
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Fig. 39 Manifolds enlargement at ωu = 0.9, U = Uhom = 0.686 for the reference system (a) and
for the system with one even superharmonic of amplitudeU2/U1 = −0.005 (b). Purple line: stable
right manifold of S1 saddle; orange line: unstable right manifold of S1 saddle; blue line: stable left
manifold of S1 saddle; red line: unstable left manifold of S1 saddle; square dot: bifurcation point

Fig. 40 Numerical threshold
of the homoclinic bifurcation
hom (Wu

l (S1) ∩ Ws
l (S1)) as

a function of the
superharmonic amplitude
U3/U1

and black profiles in Fig. 42. From the results, furthermore, it appears that atω = 0.9
the global control is even more effective than at ω = 0.7, likely due to being farther
away from the left-shifted nonlinear resonance (A-vertex of Fig. 6), thus being less
influenced by its amplifying effect.
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Fig. 41 Manifolds and basins at ωu = 0.9 for the system with optimal superharmonic U3/U1 =
−0.45, forU = 0.686 (a) andU = 0.75 (b). Purple line: stable right manifold of S1 saddle; orange
line: unstable right manifold of S1 saddle; blue line: stable left manifold of S1 saddle; red line:
unstable left manifold of S1 saddle

Fig. 42 Erosion profiles for the uncontrolled system (black line) and for the system with optimal
superharmonic U3/U1 = −0.45 (thick green line)
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5 Conclusions

Local and global dynamics of a reduced order model of noncontact atomic force
microscope have been addressed in this chapter, by considering also the possible
presence of two different control techniques, in order to comparatively point out
their effects on the overall dynamical behavior of the system. The presented results
allow to draw some general comments:

• The analysis of the basin of attraction evolution, and the quantitative description of
the relevant erosion through the evaluation of different integrity measures, prove
to be fundamental tools to obtain a comprehensive characterization of the system
dynamics. In particular, the definition of residual integrity levels associated with
the system global dynamics has highlighted a marked variability of the classical
stability boundary obtained via numerical integration with prescribed initial con-
ditions and, mostly, a meaningful lack of homogeneous safeness of the latter as
regards robustness of the system periodic solutions. In contrast, resorting to the
tools of dynamical integrity permits to detect thresholds of residual integrity able
to ensure acceptable safety targets established a priori according to the required
system performances.

• The addition of a simple external feedback control into the model, aimed at keep-
ing the single local response of the AFM cantilever to a suitable reference one and
representing a simple and efficient procedure for reliably measuring the sample
surface, causes a significant modification of both the local and global dynam-
ics. Due to the increased number of degrees of freedom, in fact, the controlled
model shows a richer bifurcation scenario than in the original (uncontrolled) sys-
tem, with elimination of the region of coexistence of resonant and nonresonant
solutions and extremely dangerous reduction of the domain of stability of system
bounded responses just in the resonance regions where the system behavior has
to be taken more strictly under control in practical applications. In these regions,
moreover, the analysis of the basins dynamical integrity highlights a generalized
detrimental effect of the control on the robustness of the basins of attraction, with
small perturbations of parameters which can cause dramatic changes in the system
safety.

• In a practical perspective, the suppression of the region of coexistence of reso-
nant/nonresonant responses (known as bistability, and investigated mainly in the
tapping AFMs literature) can be also considered as a positive effect of control, as
it avoids possible discontinuous transitions from low-amplitude to high-amplitude
responses which could lead to distortions in the sample scan. However, such a
potentially positive effect of control is vanished in parameter space by the arise of
an instability region just near the resonance frequency and in phase space, even
more dangerous from an operational point of view, by the penetration of tongues
of unbounded response inside the potential well which cause a strong reduction
in the system safety for very low values of the excitation amplitude. In this sense,
charts with constant integrity obtained for several varying parameters represent
useful tools not only to assess the effect of a parameter (or a combination of them)
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on the system robustness, but also to select an appropriate operating setting able
to ensure the functionality of the control and thus the success of the AFM scan
process.

• It is worth underlining that, while dynamical integrity is reasonably easy to investi-
gate in single-degree-of-freedom systems, basins of attraction of dimension larger
than two are computationally onerous to implement, and interpreting the results
becomes anyway a considerably difficult task. That’s the case of the system with
feedback control, for which, to achieve readable results, the investigation is carried
out by analyzing suitable bidimensional sections of the five-dimensional basins of
attraction. Of course, this implies making assumptions about some of the system
initial conditions, thus restricting the analysis to selected (although reasonable)
cases. An alternative approach is to resort to parallel computing, which anyway
requires the implementation of ad hoc routines and the possibility to use powerful
digital devices (Kreuzer and Lagemann 1996; Xiong et al. 2015; Belardinelli and
Lenci 2016).

• The second control method applied to the AFMmodel, which is specifically based
on exploiting the global properties of the dynamical system, demonstrates to be
able to preserve the system dynamical integrity by reducing the safe basin erosion.
The results of Sect. 4 show that the addition of one controlling superharmonic
entails a shift of the selected global bifurcation and simultaneously a delay of
the fall down of the erosion profiles, thus increasing the system overall safety. Of
course, themain challenge in the application of such technique concerns the identi-
fication of the global event actual triggering the loss of safety for the system, which
calls for the detection of the main saddles with the relevant manifolds. This step
of the control procedure is certainly the most computationally onerous, especially
in systems (like the one discussed here) with a quite involved topological scenario
characterized by tightly rolling manifolds. This is mainly due to the low consid-
ered value of the damping parameter (ρ1 = 10−3) typical of the vacuum operating
conditions which the analyses refer to. Nevertheless, the control technique has
proved to be effective also in such tricky cases, confirming the robustness and the
wide applicability of the method.

• As a further aspect of the global control application, the behavior of the vari-
ous manifolds in the state plane reveals to be crucial for the proper selection of
controlling superharmonic to be added into the model, i.e., for the choice between
“one-side” and “two-side” control. In fact, the system behavior after the resonance
highlights the inadequacy of looking only at the Hamiltonian system as selector
benchmark, suggesting to carefully investigate the in-well basins organization as
the system parameters change.

• From a methodological viewpoint, analysis of dynamical integrity can be used as
a general framework for evaluating the effects of control techniques to be possibly
employed for securingAFMresponse robustness and safety against jump to contact
in different dynamic conditions. In this sense, some general observations can be
pointed out:
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Fig. 43 Erosion profiles for the uncontrolled system (black line), for the system with feedback
control (orange line) and for the system with optimal superharmonic (thick green line), before the
resonance (ωu = 0.7) (a) and after the resonance (ωu = 0.9) (b)

– Unlike the feedback control, which can be considered as a local control tech-
nique, the global one has the explicit objective to increase the overall robustness
of the system, an issue which is successfully accomplished with also beneficial
effects on themain solutions displayed by the system, whose basins of attraction
are either made less fractal (before the resonance) or actually enlarged (after the
resonance).

– However, although the feedback control has some detrimental effect on the
behavior of the system with respect to the response robustness, it is able, when
properlyworking, to exactly reproduce the reference response.Conversely, in the
global control, the addition of the superharmonic slightlymodifies the amplitude
and the shape of the system responses.

– Finally, some comments can be drawn comparing the IF (dashed) andGIM (con-
tinuous) profiles of the safe basins relevant to the reference, locally controlled,
and globally controlled systems, respectively, reported in Fig. 43. At the left of
the resonance frequency, the erosion develops from the outer edge of the basins,
reducing their volume while preserving their compact core. As a consequence,
IF is always greater than GIM for all three systems (Fig. 43a). At the right of
the resonance, the erosion has the aforementioned development for low values
of the forcing amplitude (IF > GIM), whereas in the dangerous initial part of
the sharper profiles of both the reference and the globally controlled systems,
the safe basin develops by stretching its overall shape, as previously shown in
Figs. 38b and 41b, thus maintaining the volume almost unchanged while reduc-
ing its core (IF < GIM) (Fig. 43b). It is thus apparent that the choice of the
integrity measure to be used for the analyses is of great importance, and it must
be made on the basis of the system properties, of the features of the erosion
involving the basins and of the level of safety to be guaranteed.
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Abstract This chapter discusses recent applications and algorithm developments
of the cell mapping methods, which were created by C. S. Hsu in 1980s for global
analysis of nonlinear dynamical systems. Such systems can have multiple steady-
state responses including equilibrium states, periodic motions, chaotic attractors as
well as domains of attraction of these steady-state responses. Without the cell map-
ping methods, these dynamical responses would have been far more difficult to
obtain. Since the creation of them, the cell mapping methods have enjoyed attention
from the research communities. New extensions of the methods and new algorithms
including parallel computing have been developed in the past few decades. The cell
mapping methods have also been applied to global analysis and control design of
deterministic, stochastic and fuzzy dynamical systems. Representative examples of
new applications are presented in this chapter.
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1 Introduction

The cell mapping methods were created by Hsu in 1980s for global analysis of non-
linear dynamical systems that can have multiple steady-state responses including
equilibrium states, periodic motions, chaotic attractors as well as domains of attrac-
tion of these steady-state responses. The cell mapping methods have been applied to
global analysis and control design of deterministic, stochastic and fuzzy dynamical
systems. There have been several survey articles that present thorough discussions
of the literature on the cell mapping methods and their applications (Sun and Luo
2012b; Hong and Sun 2006b; Xu et al. 2013). A comprehensive review of the global
analysis with the cell mapping method in Sun and Luo (2012a) provides rich content
on engineering applications and algorithm development. A thorough review of the
progress in global analysis of nonlinear dynamics and its influence on the analysis,
control, and design of mechanical and structural systems is presented in Rega and
Lenci (2015). This chapter presents a discussion of the literature of applications and
algorithm developments of the cell mapping methods.

Two important extensions of the cell mapping methods have been developed to
improve the accuracy of the solutions obtained in the cell state space. The first is the
interpolated cell mapping which uses the cell mappings as a foundation to calculate
point-wise solutions without further numerical integrations of differential equations.
The second is the sub-division technique of the set-oriented method for improving
the accuracy of the invariant solutions obtained with the cell mapping methods. For
a long time, the cell mapping methods have been applied to dynamical systems
with low dimension until now. With the advent of inexpensive computer memories
and massively parallel computing technologies such as the graphical processing
units (GPUs), global analysis of moderate- to high-dimensional nonlinear dynamical
systems becomes feasible.

The cell mappingmethods propose to discretize the continuum state space and the
time. The discrete space consists of a finite collection of cells. The dynamical systems
that originally obey ordinary or partial differential equations are now represented by
the mappings in the cell state space, called the cell-to-cell mapping, or cell mapping
for short. The cell mappings describe the system evolution over a short time in a
finite region of interest in the cell state space. More importantly, long-term system
responses such as periodic motion, equilibrium points, limit cycle, chaotic motion,
domains of attraction, and stable and unstable manifolds of saddle points can all be
obtained from the cell mappings.

This chapter reviews the cellmappingmethods applied to deterministic, stochastic
and fuzzy dynamical systems and presents several examples of recent applications.
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2 Cell Mapping Methods

There are two versions of the cell mapping methods: the simple cell mapping (SCM)
and the generalized cell mapping (GCM). This section presents a brief introduction
of both the SCM and GCM methods.

2.1 Simple Cell Mapping

We assume that the nonlinear dynamical system is described by a point mapping
given by

xk+1 = G(xk), 0 ≤ k < ∞, xk ∈ Rn, (1)

where k is the iteration step, xk is the n-dimensional state vector at the kth step.
Consider a finite region U ⊂ Rn where a sufficiently rich dynamics of the system
resides.WediscretizeU into a collection of small, finite size boxes, knownas the cells.
Since the region U is finite, there will be a finite number of cells in the discretized
region. Hence, each cell in the collection can be numbered by one integer, denoted
as z.

The SCM accepts only one image cell for a given pre-image cell, or domain cell.
In other words, in SCM, the dynamics of the system starting from one cell with a
small but finite volume is represented by that starting from a point in the cell, usually
the center of the cell, leading to an integer-valued mapping

zk+1 = C(zk), 0 ≤ k < ∞, (2)

where C(·) is a symbolical notation of the integer mapping, and zk is an integer
representing the cell where the system resides at the kth step. Usually, C(·) has to
be constructed numerically. The region out of the domain U is called the sink cell.
If the image of a cell is out of the domain of interest, we say that it is mapped to the
sink cell. The sink cell always maps to itself.

Properties of SCM
Because there are only a finite number of cells in U, the integer mapping in Eq. (2)
eventually will revisit the cells in the path. The revisited cells hence form closed
groups called periodic groups. The minimum period of these groups is one, while
the maximum possible period is equal to the total number of cells inU. For the group
with period one, we have

z = C(z), (3)

for the cell z in the group.
The simple cell mappings zk+1 = C(zk) are stored in a single array of length Nt

where Nt is the total number of cells in U. For example, let C(i) denote the image
array. If C(i) = j , then cell z = j is the image of cell z = i . This array can be
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viewed as the storage of a sparse matrix representing the simple cell mappings over
N where N denotes the set of integers indexing the cells in U including the sink
cell. The sparse matrix reads

p ji =
{
1 if C(i) = j
0 if C(i) �= j

i, j ∈ N (4)

The array C(i) contains the forward dynamics of the system in time. The stable
steady-state responses of the system including equilibrium points, periodic orbits
and chaotic motion form periodic groups in C(i).

We can also store the pre-image information of an image cell in an array, denoted
as C−1( j). That is, i = C−1( j). In terms of the matrix p ji , the sparse matrix of the
backward dynamics is simply the transpose of the forward dynamics matrix.

p−1
i j = p ji , i, j ∈ N (5)

The backward dynamics provides an important role in the global analysis of non-
linear dynamical systems. In the backward dynamics, the unstable responses appear
to be stable. Consider a search starting from the stable steady-state responses, i.e. the
identified periodic groups. If we search along the backward dynamics using C−1( j),
we would identify the domains of attraction of the stable responses. The backward
search, on the other hand, reveals the boundaries of the domains of attraction, which
are usually outlined by the unstable manifolds in the saddles.

2.2 Generalized Cell Mapping

The GCM accepts multiple images for a pre-image cell. This is consistent with the
fact that the cell with a finite volume will evolve to cover multiple cells under the
system dynamics over a finite time. For deterministic and stochastic systems, the
GCM leads to a Markov chain representation of the dynamical system with the
transition of probabilities given by

p(k + 1) = P(k)p(k), 0 ≤ k < ∞, (6)

or in the component form

pi (k + 1) =
Nt∑
j=1

Pi j (k)p j (k), (7)

where p(k) = {pi (k)} denotes the probability that the system resides in the i th cell
at the kth step, and P(k) = {Pi j (k)} is the one step transition probability from the
j th cell to i th cell at the kth step. Nt is the total number of cells in the computational
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domain. When the matrix P(k) is independent of k, the Markov chain is said to be
stationary. Otherwise, it is non-stationary.

The rich literature on Markov chains and later the graph theory has provided us
highly effective algorithms for analyzing the GCM (Hsu 1982, 1995). The analysis
of the GCM leads to the discovery of invariant sets, stable and unstable manifolds
of saddle-like equilibrium states, domains of attraction and their boundaries. The
invariant sets represent stable equilibrium states, periodic or chaotic motions. The
invariant sets are called the persistent groups in the Markov chain literature (Chung
1967).

The stable and unstable manifolds of saddle-like equilibrium states, domains of
attraction and their boundaries are represented by the so-called transient cells.

The stationary transition probabilitymatrixP can be partitioned into the following
canonical form, also known as the normal form.

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1 T11 · · · T1l

. . .
...

. . .
...

Pm Tm1 · · · Tml

Q1 · · · R1l

. . .
...

Ql

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

where Pi is a square matrix representing the transition probability matrix among the
cells in the i th persistent group, Qi is associated with the i th open communicating
group. The cells in the group Qi are transient. Ti j and Ri j represent the evolution
paths from transient cells to stable and unstable attractors, respectively. Qi often
contains the saddle like attractors, unstable equilibrium points and unstable periodic
orbits.

The ability of the GCMmethod to conduct global analysis of nonlinear dynamics
is fully illustrated by the topological structure of the transition probability matrix P
in the normal form. We can use the GCM method to discover invariant sets, stable
and unstable manifolds of saddles, unstable solutions and domains of attraction of
invariant sets of nonlinear dynamical systems. The unstable solutions as well as
stable manifolds of saddles can be found by the backward cell mapping (Dellnitz
and Hohmann 1997; Dellnitz and Junge 2002; Sun and Luo 2012a).

Consider the transition probability sub-matrixPk associatedwith the kth persistent
group. If this group of cells represents the period-K motion of the system, it can be
partitioned into the following form.

Pk =

⎡
⎢⎢⎢⎣

Pk,K

Pk,1

. . .

Pk,K−1

⎤
⎥⎥⎥⎦ , (9)
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where Pk, j (1 ≤ j ≤ K ) is a sub-matrix of a certain dimension. When Pk has at least
one non-zero diagonal element, the period of the persistent group is one. It is called
an aperiodic group.

3 Set-Oriented Method

As an extension of cell mapping, Dellnitz and colleagues introduced the set-oriented
method with the sub-division technique that is capable of obtaining the invariant sets
of nonlinear dynamical systems with high accuracy (Dellnitz and Hohmann 1997).
The set-oriented method starts with relatively large cells and removes the cells that
don’t contain part of the invariant set by sampling a number of initial conditions
from each cell. The sub-division is then applied to the retained cells. This is how
the set-oriented method gains computational efficiency. The set-oriented method is
effectively a mixed application of SCM and GCM with the sub-division applied to
the covering set of invariant solutions.

There have been many studies of the set-oriented method. An adaptive sub-
division algorithm was developed (Dellnitz and Junge 1998) that allows the exis-
tence of multiple different cell sizes to cover the solution. A study of non-smooth
mechanical system was carried out by Neumann et al. with the set-oriented method
to find global attractors (Neumann et al. 2007). The algorithm for extracting unsta-
ble manifold and saddle solutions was introduced in Dellnitz and Junge (2002). The
set-oriented method is also a robust tool for designing optimal controls (Junge and
Osinga 2004; Grune and Junge 2005), especially for multi-objective optimal controls
(Schütze et al. 2013; Blesken et al. 2009).

The set-oriented method with sub-division has not been applied to investigate the
transient dynamics of the system such as the domains of attraction and basin bound-
ary. On the other hand, the cell mapping methods were developed for comprehensive
global analyses of nonlinear dynamical systems including the discovery of invariant
sets and transient dynamics.

4 Interpolated Cell Mapping

The sub-division technique leads to smaller and smaller cells, and therefore, the
accuracy of the solution for invariant sets improves. At some point, the sub-division
has to stop. This is when another important extension of the cell mapping methods
comes in: the interpolated cellmapping (ICM)method (Tongue 1987; Tongue andGu
1988b, c). The ICM uses the simple cell mappings to interpolate the image of a point
without integrating the differential equation using this point as an initial condition.
The simple cell mappings in the refined cells provide a database for interpolation.
The ICM method is able to construct very fine solutions of invariant sets, which
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assumes that the simple cell mappings are on a sufficiently small grid and that the
underlying dynamics of the system is smooth enough for interpolation.

The local interpolation error of ICM is of order O(h2)with the linear interpolation,
where h is the cell size, whereas the accuracy of SCM is of order O(h) (Lee and
Hsu 1994). More adjacent cells around the point of interest can be used to construct
high order interpolations to further improve the accuracy (Tongue and Gu 1988a).
A modified ICM by introducing the sampling idea of GCM was proposed to further
increase the capability of ICM to capture the boundaries of domains of attraction
(Ge and Lee 1997). Several typical nonlinear systems have been studied with the
ICM method including the Lorenz system (White and Tongue 1995), a forced beam
with cubic nonlinearity (Lee and Ghang 1994) and a spring-pendulum system (Lee
and Hsu 1994). The nonlinear system identification approach using the method of
interpolated cell mapping is proposed in Bursal and Tongue (1992).

Previous studies of the ICM have dealt with low dimensional state spaces. Exten-
sion of the interpolation scheme tomuch higher dimensional state space is non-trivial.
A recent study by Xiong and colleagues (Xiong et al. 2015) has developed an inter-
polation scheme for high dimensional state space with the accuracy of order O(h2).

Let x ∈ RN as an arbitrary point in cell z which is part of an attractor obtained by
the cell mapping method. Let x(k) (k = 2, 3, . . . , 2N + 1) denote the centers of the
neighboring cells of cell z in the orthogonal coordinate directions, and x(1) denotes
the center of cell z. It can be shown that x is always contained within the polyhedron
with vertices at x(k) (k = 2, 3, . . . , 2N + 1). Let u ∈ RN be the image point of x
to be computed by interpolation using (2N + 1) points x(k) (k = 1, 2, . . . , 2N + 1).
We propose an interpolation scheme as,

u j =
N∑
i=1

a ji xi +
N∑
i=1

b ji x
2
i + c j , j = 1, 2, . . . , N (10)

where u j is the j th component of u and xi the i th component of x. For a given j , Eq.
(10) has (2N + 1) coefficients to determine, which matches the number of points
for interpolation. Recall that the SCM uses the mapping of the center of a cell to
represent its dynamics. The point mappings of x(k) (k = 1, 2, . . . , 2N + 1) are saved
in the last iteration of sub-division, and are denoted as u(k) = F(x(k)), where F is the
underlying function of the mapping. The local error of the interpolation scheme in
Eq. (10) is of order O(‖h‖22).

If we put the set-oriented method with sub-division and the ICM method in the
framework of the cell mapping methods, it becomes apparent that the ICM method
represents a post-processing step to extract point mappings from the cell mappings
on a refined partition of the cell state space.

A Note
Both the set-oriented method and ICMmethod represent efforts to increase the com-
putational efficiency for finding invariant sets of nonlinear dynamical systems with
much improved accuracy. The accuracy of the solutions obtained by the cell map-
ping method was compared with the accuracy of the point-wise solutions obtained
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by numerical integration. Such a comparison and pursuit of point-wise accuracy are
beyond the original purpose of the cell mapping methods.

As discussed by Professor Hsu on several occasions, the goal of the cell map-
ping methods is to quickly discover the general global structure of the responses of
nonlinear dynamical systems with sufficient accuracy. In other words, the cell map-
ping methods can answer these questions with high efficiency: Howmany stable and
unstable responses of a nonlinear dynamical system exist in a certain region of the
state space? Where are they and how are they connected?

The cell mapping methods cannot deliver the fine structure of fractal dimensional
objects such as basin boundaries and strange attractors, because highly accurate
numerical integrations must be done to find the fine structure of fractal dimensional
geometry.Nevertheless, theGCMcan tellwhere in the state space fractal dimensional
objects may exist and can outline their shape.

5 Fuzzy Generalized Cell Mapping

Engineering systems are often subjected to uncertainties that are associated with the
lack of precise knowledge of system parameters and operating conditions and that are
originated from variability in manufacturing processes. The uncertainties can have
significant influence on the dynamic response and the reliability of the system, and
are often modeled as random variables or fuzzy sets. Consider a dynamical system
with fuzzy uncertainty.

ẋ = f(x, t, S), x ∈ D, (11)

where x is the state vector, t the time variable, S a fuzzy set with a membership
function μS(s) ∈ (0, 1] where s ∈ S, and f is a vector-valued nonlinear function of
its arguments. When the system parameter S is a fuzzy number. Equation (11) is a
fuzzy differential equation.

Considering all possible pre-images of cell i , we have the membership grade of
the system being in cell i at the (n + 1)th step as

pi (n + 1) = max
j

min
[
pi j , p j (n)

]
. (12)

Let p (n) be a vector with components pi (n), and P a matrix with components
pi j . Equation (12) can be written in a compact matrix notation

p (n + 1) = P ◦ p (n) , p (n) = Pn ◦ p (0) , (13)

where Pn+1 = P ◦ Pn and P0 = I. ◦ denotes the min-max operation. The matrix P
denotes the one-step transition membership matrix. Pn denotes the n-step transition
possibility matrix. The vector p (n) is called the n-step membership distribution
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vector, and p (0) the initial membership distribution vector. The (i, j)th element pi j
of the matrix P is called the one-step transition membership from cell j to cell i .

Equation (13) is called a fuzzy generalized cell mapping (FGCM) system, which
describes the evolution of the fuzzy solution process x (t) and its MDFs p(x, t), and
is a finite approximation to the fuzzy dynamical system (11) in D.

Equation (12) of the FGCM can be viewed as a discrete representation of the
master equation. The FGCM offers a very effective method for solutions to this
equation, particularly, for fuzzy nonlinear dynamical systems.

The whole algorithm of the FGCMmethod is divided into four major parts (Hong
and Sun 2006a; Hong and Xu 1999; Hsu 1995) as follows:

Part 1. Construction of a FGCM system and formation of the one-step transition
possibility matrix P.

Part 2. Determination of stable and unstable invariant sets including attractors and
unstable solutions.

Part 3. Determination of domains of attraction and boundary regions.
Part 4. Evaluation of quantitative evolution of the MDFs.

Parts 1–3 deal with the analysis of qualitative properties while Part 4 evaluates
the quantitative properties such as the MDFs. The qualitative and quantitative prop-
erties lead to a dichotomy in the computation treatment of the FGCM, and ensure
the accuracy and efficiency of the FGCM. Boolean operations are only used in the
qualitative analysis of the FGCM, while the min-max operations are only involved in
the quantitative analysis of FGCM. As a result, the transient and steady-state MDFs
of a fuzzy response process can be effectively determined in a new way.

Parallel Computing
For a long time, the cell mapping methods have been applied to dynamical sys-
tems with low dimension until now. With the advent of cheap dynamic memory
and massively parallel computing technologies, such as the graphical processing
units (GPUs), global analysis of moderate-to high-dimensional nonlinear dynami-
cal systems becomes feasible. Recent application of parallel computing with cell
mapping technique has been reported in Eason and Dick (2014) where multi-core
CPU architecture is used to speed up global analysis of nonlinear systems. In another
study (Xiong et al. 2015), the simple cell mapping (SCM) and generalized cell map-
ping (GCM) are implemented in a hybrid manner combined with the subdivision
technique to enhance the accuracy of the steady-state responses. The ICM is used
as a post-processing step to generate the point-wise approximation of the solutions
without additional numerical integrations of differential equations. The cell mapping
methods is applied to a nonlinear dynamical systemwith six-dimensional state space
in this work.
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6 Examples of Deterministic Systems

6.1 Impact Model

We first consider a two dimensional dynamical system defined by the following
implicit algebraic equations,

x (k+1)
1 = x (k)

1 + �

x (k)
2

, (14)

x (k+1)
2 = α1α2x

(k)
2 − (1 + α1)

(
�u0 sin�x (k+1)

1 − �1u1 cos�1x
(k+1)
1

)
, (15)

where

� = h

(
1 + 1

α2

)
− u0

(
cos�x (k)

1 − cos�x (k+1)
1

α2

)
(16)

− u1

(
sin�1x

(k)
1 − sin�1x

(k+1)
1

α2

)
,

and

α1 = 0.8,α2 = 0.95, u0 = 0.0125,� = π/2, (17)

h = 0.15,�1 = π/2, u1 = −0.05.

Equation (14) describes the impact process between a free mass and an oscillator
of a vibro-impact drilling device (Neumann et al. 2007). If there aremultiple impacts,
Eq. (14) is replaced by the following equation,

x (k+1)
1 = x (k)

1 + u0

x (k)
2

(
cos�x (k+1)

1 − cos�x (k)
1

)
(18)

+ u1

x (k)
2

(
sin�1x

(k+1)
1 − sin�1x

(k)
1

)
.

For each simulation from step k to k + 1, Eq. (18) is first examined. If there exists
a root x (k+1)

1 such that x (k+1)
1 > x (k)

1 , Eq. (15) is applied to solve for x (k+1)
2 . Otherwise,

Eqs. (14) and (15) are numerically solved for x (k+1)
1 and x (k+1)

2 .
Figure 1 shows the sub-division process with four different cell space resolutions.

The initial partition is 7 × 7. The region of interest is defined as [0, 2π/min{�,�1}]
× [−0.1, 0.6]. The final cell space resolution reaches 189 × 189 with 3935 cells
representing the global invariant set. The sequential computing takes 64.9844 s,
while the parallel computing only takes 4.5573 s. Note that this example requires
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Fig. 1 Global invariant set found of the impact model. The subdivision processes in four different
cellular space resolutions are presented to show the improvement of solution accuracy. Initial cell
space partition is 7 × 7. Final cell space resolution reaches 189 × 189 with 3935 cells found as
solutions. Computational time is 64.9844 s for sequential computing and 4.5573 s for parallel
computing

careful numerical treatment of a nonlinear zero finding problem. Hence, it is a harder
problem compared with those with explicit dynamics.

Figure 2 shows the global properties of the impact model in a 189 × 189 cell
space. In the figure, blue cells represent the chaotic attractor consisting of several
disjoint branches.Black cells represent the unstablemanifolds connecting the disjoint
branches of the attractor. Recall that the unstablemanifolds can be only found through
the backward mapping (Dellnitz and Hohmann 1997). Therefore, the invariant set
found with the backward selection shown in Fig. 1 coincides with the attractor and
unstable manifold in Fig. 2. For the global analysis, the sequential computing takes
263.1347 s, while the parallel computing takes 29.9928 s.

To further illustrate the speed up of parallel algorithm for invariant set and global
analysis, we perform the computing of this low dimensional example with different
configurations. Tables 1 and 2 give the execution time of the same algorithm on CPU
(sequential) and GPU (parallel) for invariant set and global analysis respectively.
The maximum acceleration for this example can reach more than 40 times, which
corresponds to the cell number at a magnitude of 104.
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Fig. 2 Global properties of the impact model solved by the modified GCM analysis flow. Cell
space partition is 189 × 189. Blue cells are the chaotic attractor, black are the unstable manifold
and red are the domain of attraction. Note the attractor and unstable manifold coincides with the
invariant set shown in Fig. 1. Sequential computing takes 263.1347 s while parallel computing takes
29.9928 s

Table 1 Comparison between sequential and parallel SCM-GCM hybrid for invariant set finding,
eight subdivisions are conducted for all computing

Ninit = [5, 5] Ninit = [10, 10] Ninit = [20, 20]
Sequential SCM-GCM 67.0220 s 170.5987 s 424.3463 s

Parallel SCM-GCM 21.2403 s 22.1674 s 24.8091 s

Speed up 3.1554x 7.6959x 17.1045x

Ninit = [50, 50] Ninit = [100, 100]
Sequential SCM-GCM 1259.8449 s 3362.4154 s

Parallel SCM-GCM 37.9964 s 82.3980 s

Speed up 33.1570x 40.8070x

6.2 Lorenz System

The Lorenz system is derived from a partial differential equation governing the
convection of fluid. In Musielak and Musielak (2009), the Lorenz systems from low
to high dimensions are discussed comprehensively from the modelling perspective.
In our work, we pick a 6D Lorenz model from Musielak and Musielak (2009) as
an example to test the invariant set searching algorithm. Details of the physical
interpretation and mathematical treatment can be found in Musielak and Musielak
(2009). The 6D Lorenz system reads,
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Table 2 Comparison between sequential and parallel SCM-GCM hybrid for global analysis

N = [50, 50] N = [100, 100] N = [150, 150]
Sequential SCM-GCM 134.6844 s 214.8391 s 1222.3 s

Parallel SCM-GCM 1.3504 s 4.2 s 21.3719 s

Speed up 99.73x 51.15x 57.20x

N = [200, 200] N = [250, 250]
Sequential SCM-GCM 2200.1 s 3342.1 s

Parallel SCM-GCM 61.6188 s 135.0587 s

Speed up 35.70x 24.75x

ẋ1 = −σx1 + σx2,
ẋ2 = −x1x3 + r x1 − x2 + x3x6 − 2x5x6,
ẋ3 = x1x2 − bx3 − x1x4 − x2x6,
ẋ4 = x1x3 − 2x1x5 + r x6 − cx4,
ẋ5 = 2x1x4 + 2x2x6 − 4bx5,
ẋ6 = σ/cx4 − cσx6,

(19)

where b = 4
1+a2 , c = 9+a2

1+a2 , a = 1/
√
2, r = 45, and σ = 10.

The domain of interest is [−35, 35] × [−50, 50] × [0, 100] × [−20, 20] ×
[0, 50] × [−2, 2]. The initial coarse cell space partition is taken as 2 × 2 × 2 × 2 ×
4 × 4.The integration time to compute pointmappings is 1.5 s, and the time increment
for a fixed step Runge-Kutta scheme is 0.015 s. 500 randomly sampled points out of
each cell are used for the GCM construction. 16 iterations of sub-division are taken
to refine the cells. The final cell space resolution is 54 × 54 × 54 × 54 × 36 × 36
with 6325 cells found in the invariant set. The entire computation with SCM-GCM
hybrid takes 256.094 s.

Figure 3 shows the growing trend of the number of cells with the iteration of sub-
divisions. The “rolling cut” effectively suppressed the exponential increase of the
number of cells. This is quite beneficial to high dimensional applications. When the
number of cells starts to decrease after a certain number of iterations, it is an indication
that the discretization error of the cell mapping with a relatively small number of
sampled points begins to show the impact on the accuracy of the solution. The
decreasing trend is caused by the removal of certain cells from further consideration
in the backward selection, although some portions of the removed cell volume may
be part of the invariant set. Such a cell is often located near the boundary of the
attractors.

If we put the random sampling to construct cell mappings in the context of esti-
mating the transition probabilities from one cell to its images, the convergence of
the sampling is of order O(m− 1

n ), where m is the sampling number and n = 6
is the dimension of the state space (Sun and Hsu 1988b, 1990). With m = 500,
O(m− 1

n ) ∼ 0.125. Apparently, a substantially large number of points need to be
sampled for the six dimensional problem. This represents a challenge in carrying out
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Fig. 3 Number of cells to be processed at each iteration of “rolling cut” sub-division of one
dimension at a time. We chose to stop the sub-division when the number starts to decrease at the
16th iteration

global analyses for high dimensional nonlinear dynamical systems, and will be our
future effort with supercomputing. Nevertheless, the reduction of the number of cells
is an indication to stop the sub-division with the limited number of sampled points.

This is when the post-processing with interpolation comes in. Figure shows the
3D projection of the global attractor and solutions from the interpolation scheme.
It is seen that the well-known butterfly shape of the strange attractor also lives in
the high dimensional state space. Figure 4 gives more information about how the
attractor looks like in different projections. The results show that the interpolation
scheme can indeed recover the detail of the fine structure in the attractors.

To further examine the quantitative performance of the interpolation scheme for
high dimensional problems, we introduce the Hausdorff distance between two sets
as a metric. Let u, v ∈ Rn be two vectors and A, B ⊂ Rn two sets of vectors. The
maximum norm distance d∞, the semi-distance dist (·, ·) and the Hausdorff distance
dH (·, ·) are defined as follows (Schütze et al. 2010):

1. d∞ = max
i=1,...,n

|ui − vi |
2. dist(u, A) = inf

v∈A
d∞(u, v)

3. dist(B, A) = sup
u∈B

d∞(u, A)

4. dH (A, B) = max{dist(A, B), dist(B, A)}
The Hausdorff distance is commonly used in multi-objective optimization com-

munity to measure the solution quality of benchmark problems (Schütze et al. 2010).
In this study, we numerically integrate the differential equations with the Runge-
Kutta method to create point mappings starting from a number of points sampled
in the cells obtained previously. The set of the sampled points is denoted as S. The
point mappings of the set S is considered as the reference solution, denoted as D(S).
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Fig. 4 2D projections of the attractor of the 6D Lorenz system. Blue dots are the centers of the
cells in the invariant set. Red dots showing the fine structure of the attractor are generated with
interpolation

We compute the Hausdorff distance dH (I (S), D(S)) between the reference solu-
tion D(S) and the interpolated point mappings of the set S, denoted as I (S). The
results shown in Fig. 5 seems to suggest that the Hausdorff distance dH (I (S), D(S))

is insensitive to the size of S.
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Fig. 5 The relationship between the number of sampled points and the Hausdorff distance of the
invariant set of the 6D Lorenz system obtained by the interpolation scheme to the reference set.
The interpolation scheme appears to be insensitive to the number of sampled points
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Recall that the local error of the interpolation scheme is proportional to the Hes-

sian matrix ∂2F
∂x2

∣∣∣
x=x0

. Hence, the Hausdorff distance actually reflects the topological

behavior of the invariant set in terms of the curvature.

6.3 A Summary

We have presented the parallel SCM-GCMhybrid method for searching the invariant
set of nonlinear dynamical systems, and a modified GCM implementation for global
analysis. Parts of the algorithm are implemented in parallel computing with GPU.
The invariant set searching algorithm takes the advantage of the fact that attractors
and steady state solutions of nonlinear systems usually occupy a small portion of
the state space. The sub-division technique is quite effective to find the invariant
set. At some point we must stop the sub-division, and treat the cell mappings as the
database for further refinement of the invariant set with the interpolation scheme.We
have proposed an interpolation scheme for high dimensional state space and proven
its accuracy as a function of the cell size. Furthermore, we have introduced the
Hausdorff distance to measure the quality of the interpolated results. We have found
that neither the sub-division technique nor the interpolation scheme can replace the
GCM method for the global analysis of nonlinear dynamical systems including the
domains of attraction and their boundaries. We have presented the modified GCM
method and its parallel implementation. Two examples including an impact model
governed by implicit mappings and a six dimensional Lorenz system are presented
to show the effectiveness of the proposed methods.

The speed up via parallel computing reported in this chapter is hardware depen-
dent. For the low dimensional examples, the laptop with a GPU having 384 cores
has delivered 40 times speed up. Higher speed up can be achieved on more advanced
machines. Finally, it should be noted that for high dimensional systems, there are still
many open computing problems to be addressed, because the compromise between
computing demand and information loss may greatly influence the solution accuracy.

7 Examples of Stochastic Systems

We consider nonlinear dynamical systems subject to periodical and Gaussian white
noise excitations.

The stochastic response analysis has been a classic and significant research topic
in nonlinear dynamical systems (Anh et al. 2014; Hawes and Langley 2015; Zhu
and Guo 2015). In particular, when a nonlinear oscillator is driven by periodic and
random excitations, it exhibits complex stochastic response phenomena including
multiple steady-state responses (Rong et al. 2004), chaotic responses (Gan 2006) and
stochastic bifurcations such as P-bifurcation (Huang et al. 2000). As an important
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characterization of the stochastic response, the PDF always attracts the attention
from many researchers. The PDF of a Markov response process is governed by the
Fokker-Planck-Kolmogorov (FPK) equation (Risken 1989; Sun 2006). However, the
exact solutions of FPK equations are available only in a few special classes of lower
order nonlinear stochastic systems. For the nonlinear systems driven by periodic
and random excitations, the FPK equation is even more difficult to deal with. We
apply the generalized cell mapping (GCM)method based on the short-time Gaussian
approximation (STGA) scheme to attack this problem.

The GCM/STGA method can be viewed as an extension of the path integral
solution method (Wehner and Wolfer 1983; Naess and Johnsen 1993). The path
integral solution method aims to evolve the PDF from an initial distribution by
repeatedly using a short-time transition probability density function (TPDF), which
is based upon a Taylor expansion of the solution to the first order approximation.
While the short-time TPDF in the GCM/STGAmethod is constructed with the mean
and covariance obtained by integrating the moment equations with Gaussian closure.

We study the periodically driven smooth and discontinuous (SD) oscillator orig-
inally proposed by Cao and coworkers (2006). The deterministic SD oscillator has
been studied extensively in recent years, including the response of discontinuous
case (Cao et al. 2008a), codimension-two bifurcation (Tian et al. 2010), piecewise
linear approximation (Cao et al. 2008b), resonant behaviors in discontinuous case
(Cao et al. 2011), and interior crisis (Wang et al. 2011). Since the SD oscillator is
inevitably affected by various random disturbances, Yue et al. (2013) studied the
global analysis of stochastic bifurcation in a SD oscillator under bounded noise
excitations. The stochastic analysis of the SD oscillator under periodic and random
excitations has been seldom reported in the literature.

7.1 The Short-Time Solution

The first-order and second-order moments of the response of a stochastic system
dX(t) = f(X, t)dt + dB(t) read as,

m(t) = E [X(t)] , (20)

C(t) = E
[
(X − m)(X − m)T

]
,

where m(t) is the mean value vector, C(t) is the covariance matrix of the response
process X(t), and B(t) is the Weiner process of strength σ(X). By applying the Itô’s
lemma, we can derive the differential equations governing the moments as follows

ṁ(t) = E [f(X, t)] , (21)

Ċ(t) = E
[
(X − m)fT (X, t) + f(X, t)(X − m)T + σ(X)σT (X)

]
.



www.manaraa.com

304 F.-R. Xiong et al.

Note that some higher-order moments appear on the right hand of the moment equa-
tions because of the nonlinearities in f(X, t) and σ(X). From the FPK equation, we
can show that the conditional probability density function q(x, τ |x0, 0) is approxi-
mately Gaussian when τ is sufficiently small. So the higher-order moments can be
expressed in terms of the first- and second-order ones (Sun and Hsu 1987; Wu and
Lin 1984), resulting in a closed set of nonlinear ordinary differential equations for
the first- and second-order moments

ṁ(t) = h (m,C, t) , (22)

Ċ(t) = g (m,C, t) ,

where h (m,C, t) and g (m,C, t) are nonlinear functions of their arguments.
Since we need the conditional probability density q(x, T |x0, 0) over one period,

we divide the period into M segments. Let τ = T/M . τ can be small enough so that
the conditional probability density q(x, kτ |x0, (k − 1)τ ) (k = 1, 2, . . . , M) for each
k is approximately Gaussian, which is given by

q(x, kτ |x0, (k − 1)τ ) = 1

(2π)N/2 |C(kτ )|1/2 (23)

× exp

{
−1

2
[x − m(kτ )]TC(kτ )−1[x − m(kτ )]

}
,

wherem(kτ ) and C(kτ ) are the short-time solutions of Eq. (22) subject to the initial
conditions m[(k − 1)τ ] = x0 and C[(k − 1)τ ] = 0.

The transition probability from regular cell i to cell j over the time interval
[(k − 1)τ , kτ ] in the period reads

q(k)
j i =

∫
C j

q(x, kτ |x̄i , (k − 1)τ )dx, (24)

where x̄i is the center of cell i, C j is the domain of cell j, and C j ⊂ D(k)
i , where the

region D(k)
i is defined as

D(k)
i = {x ∈ RN |

∫
D(k)

i

q(x, kτ |x̄i , (k − 1)τ )dx ≥ ptrunc}. (25)

In this equation, we choose the truncation of the integration domain such that
ptrunc = 0.99 because this can maintain a very high accuracy and an acceptable
computational efficiency. We should point out that the truncation level affects the
precision of the solution. According to our experience, ptrunc should not be less
than 0.95. Nevertheless, a quantitative assessment of the effect of truncation of the
domainD(k)

i on the accuracy of the steady-state solutions is not available for nonlinear
systems.
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We should point out that the Gauss-Legendre quadrature rule (Stroud 1974; Yu
et al. 1997) is employed to compute q(k)

j i from the numerical integration over domain
C j

q(k)
j i =

Sj∑
r=1

c jrq(x jr , kτ |x̄i , (k − 1)τ ), (26)

where Sj is the number of representative Gauss quadrature points chosen in cell j ,
and x jr is the r th Gauss point with the matching weight c jr . LetQ(k) = {q(k)

j i } denote
the matrix. The mapping over one period reads,

p(n + 1) = Q(M)Q(M−1) · · ·Q(1)p(n), n = 0, 1, 2, . . . (27)

It should be noted that the above solution approach to create the mapping over one
period is known as the path integral. The present approach is more accurate since
the mean and covariance are computed from the moment equations (Sun 2006).
We consider the steady-state solution with respect to the periodical mapping (27),
which is referred to as the steady-state PDF in the sense of the GCM method. The
termination condition for computing the steady-state response PDF from Eq. (27) is
taken as

|p(n + 1) − p(n)| < ε, (28)

where ε is a given small positive number. In this example, it is taken to be 0.03.

7.2 Computational Consideration

Here, we discuss some computational issues and quantitative assessment of the
GCM/STGA method. The first issue is how to choose the period division param-
eter M or the mapping time step τ . M is chosen such that the amplitude and phase
of the periodic response are accurately represented by the sampled signals. From the
point of view of reconstructing a periodic signal, M = 16 is enough.

The domain D(k)
i is an N -dimensional ellipsoid with the center at m(kτ ) and the

length of the r th radius being the r th eigenvalue of the covariance matrixC(kτ ). The
directions of the principal radii of the ellipsoid are determined by the eigenvectors
of C(kτ ). The radii of the ellipsoid provide a guideline to select the proper cell
size (Sun and Hsu 1988a, 1990). Because the domain D(k)

i contains more than 99%
of the probabilities of the one-step conditional probabilities, only cells in D(k)

i are
considered as the images of cell i . The cells outside the ellipsoid are neglected. This is
an important approach to maintain high computational efficiency of the GCM/STGA
method.
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m(kτ ) andC(kτ ) are integrated from themoment equations (22) starting from the
initial conditions m[(k − 1)τ ] = x̄i and C[(k − 1)τ ] = 0. As long as the one-step
PDF over the duration τ is nearly Gaussian, its approximation based on m(kτ ) and
C(kτ ) obtained in the current approach is more accurate than the short-time solution
of the FPK equation based on the Taylor expansion over the time interval τ (Risken
1989; Sun 2006). The current approach allows a slightly larger τ while maintaining
a comparable accuracy.

In order to assess the accuracy of the GCM/STGAmethod, we compare the results
with direct Monte Carlo simulations. We define the integrated absolute error (IAE)
as

eI AE =
∫

�

|pGCM(x, t) − pMC(x, t)| dx, (29)

where pGCM(x, t) denotes the PDF computed by the GCM/STGA method, and
pMC(x, t) represents the PDF by direct Monte Carlo simulations.

7.3 SD Oscillator

The dimensionless stochastic differential equations of the SD oscillator driven by
both periodic force and Gaussian white noise in the Itô sense are given by

dX1(t) = X2dt, (30)

dX2(t) = [−2ξX2 − ω2
0X1 + ω2

0g(X1) + f cos(ωt)]dt + √
2DdB(t),

where X1(t) and X2(t) are the displacement and velocity response processes, the
nonlinear function g(x1) = x1√

x21+a2
, ξ is the viscous damping coefficient, ω0 is the

natural frequency of the system, f and ω are the amplitude and frequency of the
harmonic force. The period of the force is T = 2π/ω. a is the so-called smoothness
parameter. The system exhibits smooth dynamics behavior when a > 0, while the
dynamics is discontinuous when a = 0 (Cao et al. 2006). B(t) is the unit Weiner
process such that

E[dB(t)] = 0, E[dB(t)dB(t ′)] =
{
dt, t = t ′,
0, t �= t ′. (31)

Let mi = E[Xi ], vi = E[(Xi − mi )
2] (i = 1, 2) and c12 = E[(X1 − m1)(X2 −

m2)]. The moment equations for mi , vi and c12 can be derived from Eq. (30) with
the help of Itô’s lemma.
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ṁ1 = m2,

ṁ2 = −2ξm2 − ω2
0m1 + ω2

0E[g(X1)] + f cos(ωt),

v̇1 = 2c12, (32)

v̇2 = −4ξv2 − 2ω2
0c12 + 2ω2

0E[(X2 − m2)g(X1)] + 2D,

ċ12 = v2 − 2ξc12 − ω2
0v1 + ω2

0E[(X1 − m2)g(X1)].

The initial conditions for the moment equations are

m1(0) = x̄10, m2(0) = x̄20, (33)

v1(0) = v2(0) = c12(0) = 0,

where (x̄10, x̄20) denotes the center of the cell under consideration.

7.4 Smooth Case

When a > 0, g(x1) is a rational function. It is not straightforward to apply the Gaus-
sian closure method to compute the expectation of this function. However, the proba-
bility distribution of the system over a short time τ starting from an initial probability
density being Dirac delta function will remain highly concentrated in a small region
near the initial location. Hence, the function g(x1) can be approximated by using the
Taylor expansion at the initial location. Consider a three-order Taylor expansion of
function as

g(x1) = β0 + β1x1 + β2x
2
1 + β3x

3
1 + O(x41 ), (34)

where the coefficients β j ( j = 0, 1, 2, 3) are given by

β0 = g(x̄10) − β3 x̄
3
10 − β2 x̄

2
10 − β1 x̄10,

β1 = g
′
(x̄10) − 3β3 x̄

2
10 − 2β2 x̄10,

β2 = 1

2
[g′′

(x̄10) − 6β3 x̄10], (35)

β3 = 1

6
g

′′′
(x̄10).

With the Taylor expansion and Gaussian closure, we obtain a closed set of differ-
ential equations for the first- and second-order moments
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ṁ1 = m2, (36)

ṁ2 = −2ξm2 − ω2
0m1 + ω2

0[β0 + β1m1 + β2(m
2
1 + v1)

+ β3(m
3
1 + 3m1v1)] + f cos(ωt),

v̇1 = 2c12,

v̇2 = −4ξv2 − 2ω2
0c12 + 2ω2

0[β1c12 + 2β2m1c12

+ 3β3c12(m
2
1 + v1)] + 2D,

ċ12 = v2 − 2ξc12 − ω2
0v1 + ω2

0[β1v1 + 2β2m1v1 + 3β3v1(m
2
1 + v1)].

7.5 Discontinuous Case

When a = 0, g(x1) is reduced to the sign function sgn(x1). The closed set of moment
equations after the application of the Gaussian closure can be obtained as

ṁ1 = m2, (37)

ṁ2 = −2ξm2 − ω2
0m1 + ω2

0sgn(m1) erf

( |m1|√
2v1

)
+ f cos(ωt),

v̇1 = 2c12,

v̇2 = −4ξv2 − 2ω2
0c12 + 2ω2

0

√
2

πv1
c12 exp

(
− m2

1

2v1

)
+ 2D,

ċ12 = v2 − 2ξc12 − ω2
0v1 + ω2

0

√
2v1
π

exp

(
− m2

1

2v1

)
.

We have used the following expectations of Gaussian processes in the derivation
(Sun 1995)

E[sgn(X1)] = sgn
(

m1√
2σ1

)
erf

(
|m1|√
2σ1

)
,

E[(X2 − m2)sgn(X1)] = 2c12√
2πσ1

exp
(
− m2

1

2σ2
1

)
, (38)

E[(X1 − m1)sgn(X1)] = 2σ1√
2π

exp
(
− m2

1

2σ2
1

)
,

where σ1 = √
v1 and erf(·) denotes the error function.

We are now ready to apply the GCM/STGA method to study the stochastic
response PDFs of the SD oscillator (30). In this work, the moment equations (36) and
(37) are numerically integrated with the fourth order Runge-Kutta algorithm. The
short-timeGaussian PDFs of the system over the short time interval τ are constructed
with the first- and second-order moments. We have taken M to be 16 and kept the
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cell size to be 0.05 × 0.05 for all the reported cases. The 2 × 2 Gauss quadrature
points are used in each cell to compute the integrals for q(k)

j i in Eq. (26).

7.6 Transient Response

First, we study the transient response PDFs when a = 0.6. We have taken ξ = 0.04,
ω0 = 1.0, f = 0.83, ω = 1.0606 and D = 0.01. τ = T/M ≈ 0.370. Moreover, the
domain of interest is taken to be � = [−5, 3] × [−4, 4]. The underlying noise-free
system (30) also has only one period-1 attractor A located at the point (x1, x2) =
(−0.575, 0.025) on the Poincaré section. Before reaching the attractor, the system
goes through a transient chaos that is represented by a chaotic saddle S. The initial
distribution p(0) is taken as

pcA(0) = 1, and pi (0) = 0, i �= cA, (39)

where cA is the cell that contains attractor A.
The evolution of the PDFs seems quite complex. The contours of the transient

joint PDFs are shown in Fig. 6. It can be seen that the shape of the transient joint
PDF gradually evolves to look like the chaotic saddle in figure. The chaotic response

(a)
−3

−1

1

3

(b)

(c)

x
2

x1

−4 −2 0 2
−3

−1

1

3

(d)

−4 −2 0 2
0

0.3

0.6

0.9

1.1

Fig. 6 The contours of the transient joint PDFs of the system (30). a t = 1T . b t = 2T . c t = 3T .
d t = 4T
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is confirmed with the largest Lyapunov exponent λ1 = 0.09 (Benettin et al. 1980).
The PDF reaches the steady-state in about four periods.

7.7 Steady-State Response Analysis

We now consider the steady-state response of the SD oscillator. We have taken the
parameters ξ = 0.2, ω0 = 1.0, f = 0.25, ω = 1.0 and D = 0.01. τ = 0.393. The
domain � is chosen to be [−3, 3] × [−3, 3]. We apply the GCM/STGA method to
study the steady-state response PDFs for different smoothness parameters a.

When a decreases to 0, the dynamics of the SD oscillator suddenly becomes dis-
continuous. In the deterministic system, the velocity flow goes through a jump when
the system crosses from one well to another because of the loss of local hyperbol-
icity (Cao et al. 2006). Figure 7 shows the contours of the steady-state joint PDFs
obtained with the GCM/STGAmethod for different a. The sharp peak of the steady-
state PDFs due to the sign function sgn(x1) and the stochastic P-bifurcation can be
clearly observed.

(a)−1

0

1

(b)

(c)

x
2

−1

0

1

(d)

(e)

x1
−1 0 1

−1

0

1
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−1 0 1
0

0.6

1.2

1.8

2.4

2.7

Fig. 7 The contours of the steady-state PDFs of the system (30) for different values of a. a a = 1.0.
b a = 0.9. c a = 0.8. d a = 0.6. e a = 0.4. f a = 0
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7.8 A Summary

The GCM/STGA method offers an effective tool for computing and analyzing the
stochastic response of periodically driven nonlinear systems under Gaussian white
nose excitations.

8 Examples of Fuzzy Systems

For fuzzy nonlinear dynamical systems, a response process is difficult to analyze
because the evolution of the MDFs of the fuzzy response process cannot be readily
obtained analytically. Many studies dealt with fuzzy dynamical systems governed by
linear ordinary differential equations (Buckley andFeuring 2000; Park andHan 2000;
Yoshida 2000). Chaotic sequences of fuzzy nonlinear maps were studied (Buckley
and Hayashi 1998). A master equation was derived for the evolution of MDFs of
fuzzy processes (Friedman and Sandler 1996, 1999). However, the solution to the
fuzzy master equation is rare, particularly for nonlinear dynamical systems.

Fuzzy response is naturally global in the sense that it is represented by a fuzzy set
of a finite possibility measure in the state space. It is computationally intensive and
ineffective to study such a solution by using numerical simulations (Ma et al. 1999;
Zhang et al. 1998). The cell mapping method represents a major advancement in this
regard. Here, we present examples of fuzzy dynamical systems with the help of the
FGCM method.

8.1 Triple-Well Potential System

Consider the forced Duffing oscillator

ẍ + δẋ + dV (x)

dt
= f cosωt (40)

with a triple-well potential V (x) = 1
2αx

2 + 1
4βx

4 + 1
6γx

6 when α > 0, β < 0, γ >

0. δ is damping coefficient. f and ω are forcing magnitude and frequency. α, β, γ
are constant parameters of the potential. A triple-well potential system has attracted
much attention, due to the fact that it is a universal nonlinear differential equation,
and that many nonlinear oscillators in physics, engineering and biological problems
can be described by the model or analogous ones.

We take δ = 0.35, α = 1.0, β = −0.5, γ = 0.05, f = 0.2 and ω = 1.0 where
the system has three coexistent period-one attractors A1, A2 and A3. Figure 8 shows
the global properties of Eq. (40) by means of point mapping under cell reference
(PMUCR), a two-scaled numerical method of global analysis (Jiang and Xu 1994;
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Fig. 8 Global phase portrait
of the deterministic Duffing
(40). A1 A2 and A3 (black
dots) denote three period-one
attractors. On basin
boundary lie the saddles
denoted by B1 and B2 (black
dots). The basin boundary
denoted by a green line is the
stable manifold of the saddle
B1 and B2. The unstable
manifolds of the saddle B1
and B2 denoted by a red line
are directed to A1, A2 and
A3 respectively

Jiang 2012). The basin boundary (green) is the stable manifolds of unstable saddles
B1 and B2. The branches (red) of the unstable manifolds of B1 and B2 are directed to
the three attractors A1, A2 and A3 respectively. B1 and B2 are the unstable invariant
sets of the Duffing system (40). A1, A2 and A3 the stable invariant sets.

In the following, we will study escape bifurcations and transient and steady-state
MDFs of a fuzzy response for the forced Duffing oscillator with fuzzy uncertainty.

8.2 Additive Fuzzy Noise

Consider now the Duffing equation with additive fuzzy noise

ẋ = y
ẏ = −δy − αx − βx3 − γx5 + f cosωt + S.

(41)

where S is a fuzzy parameter with a triangular membership function,

μS (s) =
⎧⎨
⎩

[s − (s0 − ε)] /ε, s0 − ε � s < s0
− [s − (s0 + ε)] /ε, s0 � s < s0 + ε

0, otherwise
(42)

ε > 0 is a parameter characterizing the intensity of fuzziness of S and is called a fuzzy
noise intensity. s0 is the nominal value of S with membership grade μS (s0) = 1. In
the computation, we take s0 = 0.

The domain D = (−3.5 ≤ x ≤ 3.5) × (−2.0 ≤ y ≤ 2.0) is discretized into
141×141 cells. The 5×5 sampling points are used within each cell. S is discretized
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into 401 segments. Hence, out of each cell, there are 10,025 trajectories with varying
membership grades to determine the one-step transition possibility with the time
length �T = T = 2π/ω. T is called one mapping step. The FGCM is used to ana-
lyze the escape bifurcations and the transient and steady-state MDFs of the fuzzy
response of the system.

In the computation of the two examples, 199,307,025 sample trajectories in
total are calculated to generate a FGCM system by using the adaptive method of

(a)

(c)

(e)

(b)

(d)

(f)

Fig. 9 Escape bifurcations of the fuzzy Duffing system (41) with respect to the intensity of fuzzy
noise ε. a and b catastrophic bifurcation in the interval (0.256, 0.257); c and d catastrophic bifur-
cation in the interval (0.281, 0.282); e and f explosive bifurcation in the interval (0.297, 0.298).
Letter ‘A’ denotes the attractor and ‘S’ denotes the saddle
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Runge-Kutta simulations. An estimation error is taken 1.0e−6 to control the step
size of integrations. The CPU runtime is 4 h in average for a run of the whole FGCM
algorithm with a desktop PC of CPU6600/2.4GHz.

Here we concentrate on noise-induced escape from each of potential wells with
an increase of the intensity of fuzzy noise ε. It involves the two kinds of catastrophic
and explosive bifurcations (Thompson et al. 1994; Grebogi et al. 1983), a sudden
change in the topology of fuzzy attractors. We propose an understanding of these
bifurcations through a phase portrait diagram involving three types of fuzzy sets: an
attractor A, a saddle in a basin boundary B or a saddle in the interior of a basin S.

As the intensity of fuzzy noise ε increases from 0.0 to 0.256, the fuzzy attractor
A1, shown in Fig. 9a moves towards to the fuzzy saddle in the basin boundary. The
catastrophic bifurcation occurs when the attractor touches the saddle at ε = 0.256.
After the collision at ε = 0.257, shown in Fig. 9b, the attractor A1 together with its
basin of attraction disappears, and is converted into the saddle in the boundary B.

As ε increases further from 0.257 to 0.281, the fuzzy attractor A2 in Fig. 9c and
the fuzzy saddle in the basin boundary grow bigger and bigger. The catastrophic
bifurcation occurs when the saddle and the attractor collide at ε = 0.281, leaving
behind a saddle in the basin interior of A3 after the collision ε = 0.282. This escape
bifurcation with respect to the parameter ε is graphically illustrated in Fig. 9c, d.

The last escape from a potential well is due to an explosive bifurcation when
ε ∈ (0.297, 0.298) shown in Fig. 9e, f. In this case the attractor A3 collides with the
saddle in the basin interior to form a large attractor Alarge.

8.3 A Summary

The fuzzy generalized cell mapping (FGCM) method is demonstrated to be an effec-
tive tool for analyzing dynamics and bifurcations of complex nonlinear dynamical
systems with fuzzy uncertainties. A mathematical foundation of the FGCM is estab-
lished as a discrete representation of the fuzzy master equation for the possibility
transition of continuous fuzzy processes.
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